

Guide for Developers
signoPAD-API

Software components for communication with
signotec Sigma (Evolis Sig100), Zeta, Omega (Evolis Sig200),
Gamma (Evolis SigActiv), Delta and Alpha LCD pads

This product and its documentation are manufactured by ©signotec GmbH
and distributed by ©Evolis

Guide_SIGAPI_20210108_ENG 2

Contents
1 FUNCTIONAL OVERVIEW 6

2 SYSTEM REQUIREMENTS 7

 SIGNOPAD API COMPONENTS FOR WINDOWS 7
 SIGNOPAD API COMPONENTS FOR JAVA 8
 SIGNOPAD API COMPONENTS FOR LINUX 8

3 GENERAL INFORMATION ON THE SIGNOPAD-API COMPONENTS 9

 32- AND 64-BIT VARIANTS OF THE SIGNOPAD API 9
 STPADCAPT.OCX 9
 STPADLIB.DLL 10
 STPADLIBNET.DLL 10
 USING MULTIPLE INSTANCES 11
 DATA FORMATS 11
 SIGNDATA STRUCTURES 11
 NOTES FOR REDISTRIBUTION 11

4 SIGNING AND ENCRYPTION WITH SIGNOTEC LCD SIGNATURE PADS 13

 SIGNING DOCUMENTS 13
 SIGNING OF IMAGE CONTENT (CONTENT SIGNING) 15

5 DESCRIPTION OF POSSIBLE ERROR MESSAGES 17

6 INFORMATION ABOUT THE AVAILABLE IMAGE MEMORY 19

 VOLATILE IMAGE MEMORY 19
 NON-VOLATILE IMAGE MEMORY 20
 COPYING BETWEEN IMAGE MEMORIES 21
 THE TYPICAL PROCESS 22
 THE STANDBY FEATURE 23
 EXCLUSIVE USE OF NON-VOLATILE MEMORY 24

7 METHODS 25

 DEVICESETCOMPORT METHOD 25
 DEVICEGETCONNECTIONTYPE METHOD 27
 DEVICEGETCOMPORT METHOD 30
 DEVICEGETIPADDRESS METHOD 32
 DEVICEGETCOUNT METHOD 33
 DEVICEGETINFO METHOD 35
 DEVICEGETVERSION METHOD 37
 DEVICEGETCAPABILITIES METHOD 39
 DEVICEOPEN METHOD 41

 DEVICECLOSE METHOD 43
 DEVICESETLED METHOD 44
 DEVICEGETNFCMODE METHOD 45
 DEVICESETNFCMODE METHOD 48
 DEVICESTARTSERVICE METHOD 49
 SENSORGETSAMPLERATEMODE METHOD 51
 SENSORSETSAMPLERATEMODE METHOD 53
 SENSORSETSIGNRECT METHOD 55
 SENSORCLEARSIGNRECT METHOD 56
 SENSORSETSCROLLAREA METHOD 57

Guide_SIGAPI_20210108_ENG 3

 SENSORSETPENSCROLLINGENABLED METHOD 59
 SENSORADDHOTSPOT METHOD 60
 SENSORADDSCROLLHOTSPOT METHOD 62
 SENSORADDKEYPADHOTSPOT METHOD 65
 SENSORGETKEYPADENTRIES METHOD 67
 SENSORSETHOTSPOTMODE METHOD 69
 SENSORCLEARHOTSPOTS METHOD 71
 SENSORCLEARKEYPADENTRIES METHOD 72
 SENSORSTARTTIMER METHOD 73
 SENSORSTOPTIMER METHOD 75
 SIGNATURESETSECUREMODE METHOD 76
 SIGNATURESTART METHOD 78
 SIGNATURESTOP METHOD 79
 SIGNATURECONFIRM METHOD 81
 SIGNATURERETRY METHOD 82
 SIGNATURECANCEL METHOD 83
 SIGNATUREGETSIGNDATA METHOD 84
 SIGNATUREGETISODATA METHOD 86
 SIGNATURESAVEASSTREAM/SIGNATURESAVEASFILE METHOD 88
 SIGNATURESAVEASSTREAMEX / SIGNATURESAVEASFILEEX METHOD 88
 SIGNATUREGETBOUNDS METHOD 95
 SIGNATURESCALETODISPLAY METHOD 98
 DISPLAYERASE METHOD 99
 DISPLAYERASERECT METHOD 101
 DISPLAYCONFIGPEN METHOD 102
 DISPLAYSETFONT METHOD 103
 DISPLAYSETFONTCOLOR METHOD 105
 DISPLAYSETTARGET METHOD 106
 DISPLAYSETTEXT METHOD 109
 DISPLAYSETTEXTINRECT METHOD 111
 DISPLAYSETIMAGE / DISPLAYSETIMAGEFROMFILE METHOD 114
 DISPLAYSETPDF METHOD 117
 DISPLAYSETIMAGEFROMSTORE METHOD 119
 DISPLAYSETOVERLAYRECT METHOD 121
 DISPLAYSETSCROLLPOS METHOD 123
 DISPLAYGETSCROLLPOS METHOD 124
 DISPLAYSAVEIMAGEASSTREAM / DISPLAYSAVEIMAGEASFILE METHOD 126
 DISPLAYSETSTANDBYIMAGE / DISPLAYSETSTANDBYIMAGEFROMFILE METHOD 130
 DISPLAYSETSTANDBYIMAGEEX / DISPLAYSETSTANDBYIMAGEFROMFILEEX METHOD 133
 DISPLAYCONFIGSLIDESHOW METHOD 136
 DISPLAYCONFIGSLIDESHOWEX METHOD 138
 DISPLAYGETSTANDBYID METHOD 140
 DISPLAYSETBACKLIGHT METHOD 142
 CONTROLSETLOGDIRECTORY METHOD 143
 CONTROLGETVERSION METHOD 144
 CONTROLERASE METHOD 144
 CONTROLSETHOTSPOTMODE METHOD 145
 CONTROLGETERRORSTRING METHOD 147
 CONTROLSETSTPADLIB METHOD 148
 CONTROLSETCALLBACK METHOD 149
 CONTROLEXIT METHOD 150
 RSAGENERATESIGNINGCERT/RSAGENERATESIGNINGCERT METHOD 151

Guide_SIGAPI_20210108_ENG 4

 RSASETSIGNINGCERT/RSASETSIGNINGCERTPW METHOD 153
 RSASAVESIGNINGCERTASSTREAM / RSASAVESIGNINGCERTASFILE METHOD 157
 RSASETHASH METHOD 160
 RSACREATEDISPLAYHASH METHOD 162
 RSACREATEHASHEDIMAGE METHOD 165
 RSASIGN/RSASIGNPW METHOD 169
 RSASETSIGNPASSWORD METHOD 173
 RSASETENCRYPTIONCERT/RSASETENCRYPTIONCERTPW METHOD 175
 RSAGETENCRYPTIONCERTID METHOD 179
 RSAGETSIGNDATA METHOD 181
 RSADECRYPTSIGNDATA METHOD 184
 RSAEXTRACTEXTRADATA METHOD 190
 PDFLOAD METHOD 198
 PDFGETPAGECOUNT METHOD 201
 PDFGETWIDTH METHOD 202
 PDFGETHEIGHT METHOD 204
 PDFSELECTRECT METHOD 206
 PDFADDIMAGE / PDFADDIMAGEFROMFILE METHOD 208
 PDFREMOVEIMAGE METHOD 211

8 PROPERTIES 214

 DEVICELEDDEFAULTFLAG PROPERTY 214
 CONTROLVERSION PROPERTY 215
 CONTROLAPPNAME PROPERTY 216
 CONTROLBACKCOLOR PROPERTY 216
 CONTROLRECTCOLOR PROPERTY 217
 CONTROLPENCOLOR PROPERTY 218
 CONTROLPENWIDTH PROPERTY 218
 CONTROLMIRRORDISPLAY PROPERTY 219
 DISPLAYWIDTH PROPERTY 220

 DISPLAYHEIGHT PROPERTY 220
 DISPLAYRESOLUTION PROPERTY 221
 DISPLAYTARGETWIDTH PROPERTY 222
 DISPLAYTARGETHEIGHT PROPERTY 223
 DISPLAYSCROLLSPEED PROPERTY 224
 DISPLAYROTATION PROPERTY 224
 SIGNATURESTATE PROPERTY 225
 RSASIGNPASSWORDLENGTH PROPERTY 226
 SIGNATURESIGNDATA PROPERTY 227

9 EVENTS 228

 DEVICEDISCONNECTED EVENT 228
 SIGNATUREDATARECEIVED EVENT 229
 SENSORHOTSPOTPRESSED EVENT 231
 EVENT SENSORTIMEOUTOCCURED 232
 DISPLAYSCROLLPOSCHANGED EVENT 234

Models Matching Table
Evolis Model Name Signotec Model Name
Evolis Sig100 Lite Sigma Lite

Evolis Sig100 Sigma
Evolis Sig200 Omega
Evolis SigActiv Gamma

Legal notice
All rights reserved. This document and the components it describes are products copyrighted by
signotec GmbH, based in Ratingen, Germany. Reproduction of this documentation, in part or in whole, is
subject to prior written approval from signotec GmbH. All hardware and software names used are trade
names and/or trademarks of their respective manufacturers/owners. Subject to change at any time
without notice. We assume no liability for any errors that may appear in this documentation.

Document History

Evolis Document Name and
Version

Signotec Document Name and
Version

Guide_SIGAPI_20210108_ENG Signature Pad-API Documentation
EN
2.31

Guide_SIGAPI_20210108_ENG 6

1 Functional overview
The signoPAD API contains visual and non-visual interfaces, allowing programmers to implement a wide
range of functions for capturing electronic signatures and displaying graphics, text and buttons on a
signotec LCD pad. The ‘STPad’ components all offer virtually the same range of functions – except for the
display on the PC screen – and differ mainly in the technology used (COM, .NET Assembly, Native DLL).
The ‘STPadLib.dll’ component does not contain a visual control element and can therefore not be used
directly to display signatures in real time on a PC screen.
The following table provides an overview of the components included in the signoPAD API.

File name Short description
STPadCapt.ocx Visual control element (ActiveX/COM) for activating the Sigma, Zeta,

Omega, Gamma, Delta and Alpha model types and for visualising
signature data.

STPadLib.dll Non-visual native library for activating the Sigma, Zeta, Omega, Gamma,
Delta and Alpha model types.

STPadLibNet.dll .NET class library for activating the Sigma, Zeta, Omega, Gamma, Delta
and Alpha model types. Contains a non-visual as well as a visual (Windows
Forms Control) class.

STPdfLib16.dll DLL that is only required if the DisplaySetPDF(), PDFLoad(),
PDFGetPageCount(), PDFGetWidth(), PDFGetHeight() or
PDFSelectRect() method is used. It is not possible to use this DLL
directly.

STPad.ini Control file to set different kind of parameters for the pad communication.
In addition, debug logging can be activated for the components listed
above.

STPadStores.ini Control file to assign non-volatile image memories exclusively to an
application. Please refer to section ‘Exclusive use of non-volatile memory’
for details.

signview.dll Some of the demo applications use SignDraw Control from signview.dll.
This file is only included as a demo version. The full version and
documentation are available separately in signoAPI.

Various sample
applications

Applications and source code in different programming languages to
demonstrate the functions of the STPad components.

Please note: The STPad.dll component contained in the signoPad API 8.0.18 or earlier is no longer
required. The applications signoReset, signoImager 2 and signoIntegrator 2 that were contained in
signoPAD-API 8.0.25 or earlier, are now contained in the separate signoPAD-Tools Setup, which can be
downloaded free of charge from www.signotec.de.

http://www.signotec.de/

Guide_SIGAPI_20210108_ENG 7

2 System requirements

 signoPAD API components for Windows
The signoPAD API for Windows can be run on all Windows versions as of Windows 7. It was tested under
the following systems and development environments:

- Windows 7
- Windows 8
- Windows 8.1
- Windows 10
- Microsoft Visual Studio 2010 Professional Edition
- Microsoft Visual Studio 2012 Professional Edition
- Microsoft Visual Studio 2013 Professional Edition
- Microsoft Visual Studio 2015 Professional Edition
- Microsoft Visual Studio 2017 Professional Edition
- Microsoft Visual Studio 2019 Professional Edition
- CodeGear Delphi 2007 Professional Edition
- Embarcadero Delphi XE Architect Edition

2.1.1 Dependencies
The components, applications and their dependencies respectively contained in the signoPAD API
sometimes require different versions of the Microsoft C++ libraries and / or the Microsoft.NET
framework. The following provides you with an overview of the libraries that are required in each case
(depending on the set-up variant for the x86 or x64 platforms):

Component C++ library .NET framework
STPadCapt.ocx Version 14.1 (VS 2017) -
STPadLib.dll Version 14.1 (VS 2017) -
STPadLibNet.dll Version 14.1 (VS 2017) Version 4.0 (Client

Profile)
STPadCapt Demo App.exe (C++, Delphi,
VB6)

Version 10.0 (VS 2010) -

STPadCapt Demo App.exe (C# / VB.NET) Version 10.0 (VS 2010) Version 2.0
STPadLib Demo App.exe (C++) Version 10.0 (VS 2010) -
STPadLibNet Demo App.exe (C#) Version 10.0 (VS 2010) Version 4.0 (Client

Profile)
The signoPAD API Setup automatically installs the ‘Visual Studio 2010 Redistributables’, ‘Visual Studio
2017 Redistributables’ and .NET 4 Client Profile where necessary.
.NET 2.0 is not included in the signoPAD API and must be manually installed if necessary.
All other components of the signoPAD API do not require .NET Framework.

2.1.2 Known problems

2.1.2.1 Visual C ++ and optional parameters
The COM wrapper in Visual C++ does not support the optional parameters of STPadCapt.ocx. In order to
be able to use this feature, the wrapper class must be changed manually, for example for DeviceOpen ()
as in the following example:

Guide_SIGAPI_20210108_ENG 8

long DeviceOpen(long nIndex, bool bEraseDisplay=true)
{
 VARIANT bEraseDisplay;
 bEraseDisplay.vt = VT_BOOL;
 bEraseDisplay.boolVal = bEraseDisplay;
 long result;
 static BYTE parms[] = VTS_I4 VTS_VARIANT ;
 InvokeHelper(0x5, DISPATCH_METHOD, VT_I4, (void*)&result,
parms, nIndex, &bEraseDisplay);
 return result;
}

More details can be found in the C++ STPadCapt demo application.

2.1.2.2 Multithreading
STPadCapt.ocx must run in the single-threaded apartment (STA). If the STPadCapt.ocx shall be used in an
MTA application, you should create an STA Form including the STPadCapt.ocx and call this as a modal
dialog from your application.

2.1.2.3 .NET 3.5 and older
Current versions of Visual Studio generate COM wrappers in projects with .NET 3.5 or older for .NET 4.0,
resulting in run-time errors. This also applies to the included example projects for the STPadCapt.ocx.
Please use Visual Studio 2010 if you want to use the STPadCapt.ocx in a .NET application with .NET 3.5 or
older.

2.1.2.4 .NET 4.0
STPadLibNet.dll has used .NET 4.0 since version 8.1.4. Older .NET versions are no longer supported.
However, this also means that the .NET 2.0 runtime activation policy no longer needs to be enabled
in .NET 4.0-based projects. The changes previously necessary to the ‘app.config’ file within the project
are no longer required and may be reversed, if necessary.

 signoPAD API components for Java
Please use signoPAD API Java, which can be downloaded from www.signotec.de.

 signoPAD API components for Linux
Please use the signoPAD API Linux. Please speak to your signotec contact if you are interested.

http://www.signotec.de/

Guide_SIGAPI_20210108_ENG 9

3 General information on the signoPAD-API components
One of the ‘STPad’ components is required to activate a signotec LCD pad. The required functionality
and technology used determine which component is chosen. For further details, see the following
sections.

 32- and 64-bit variants of the signoPAD API
The signoPAD API is available in both x86 (32-bit) and x64 (64-bit). Windows 64-bit allows for the parallel
installation of both set-ups.
The x86 version only contains components and applications that were compiled for the x86 platform.
But both the set-up and all the components and applications can also be used on 32-bit and 64-bit
versions of Windows.
The x64 version only contains components and applications that were compiled for the x64 platform.
Some demo applications are only compiled for x86 and are not included in this release. Both the set-up
and all the components and applications can only be used on 64-bit versions of Windows.
Since the two versions of the components differ neither in name nor in the interface, only one version
has to be referenced. For different reasons, if you are developing using Visual Studio, it is recommended
that you use the respective x86 version from the 32-bit set-up during development. The appropriate
component for the target platform at hand must be used in the implementation. The following table
shows which version of the components must be used for specific operating system or application
versions:

Operating system Application Component
x86 (32 Bit) x86 (32 Bit) x86 (32 Bit)

x64 (64 Bit) not supported
Any CPU x86 (32 Bit)
Any CPU (32 Bit preferred) x86 (32 Bit)

x64 (64 Bit) x86 (32 Bit) x86 (32 Bit)
x64 (64 Bit) x64 (64 Bit)
Any CPU x64 (64 Bit)
Any CPU (32 Bit preferred) X86 (32 Bit)

 STPadCapt.ocx
The STPadCapt.ocx component is self-registering and supports the Microsoft IDispatch interface. This
makes it equally available under environments such as .NET, Delphi, Visual C++ or Visual Basic.
This component should be used if the signature is to be displayed in a window in real-time. The
STPadLibNet.dll component should be used for .NET applications.
This OCX must be registered in the system using regsvr32 so that all applications access the same
component. The WoW64 technology from Microsoft allows for the parallel installation and registration
of the x86 and x64 versions of OCX.
Generally speaking, the control element is embedded in a window during development; most
development environments will then automatically ensure correct initialisation. However, it is also
possible to generate the element at runtime; the CreateControl() method is available in this case. For
details, please see the Microsoft documentation for ActiveX components.

3.2.1 ProgID allocation
Below is the CLSID for the control:

ActiveX control name CLSID
signotec Pad Capture Control 3946312B-1829-4D4F-A2DF-CD35C8908BA1

The IID for the dispatch interface:
Interface name IID

Guide_SIGAPI_20210108_ENG 10

_DSTPadCapt DBCB0876-0133-4C3A-975D-2463747AC408
The IID for the event dispatch interface:

Interface name IID
_DSTPadCaptEvents 30C53BC9-DAF3-423A-A283-BFEF408BD0A9

Below is the ProgID for the control:
ActiveX control name Prog ID
signotec Pad Capture Control STPadCapt.STPadCaptCtrl.1

 STPadLib.dll
STPadLib.dll is a native and dynamically loadable library (DLL). A C header file (STPadLib.h) and a library
file (STPadLib.lib) are included. This DLL can be used both statically and with dynamic linking; it can
therefore be used in all common development environments. Initialisation is performed automatically as
soon as the DLL is activated; before it is unloaded again, the STControlExit() method must be
called to release resources used internally.
This component should be used if there is no window available in which a visual control element can be
embedded, or if no real-time display is required. It is also very suitable for a simple program without user
interface that only checks, for example, whether signotec pads are connected. The STPadLibNet.dll
component should be used for .NET applications.
The DLL cannot be registered in the system, but must be in the application’s search path at runtime.
Various applications can therefore access various versions of the DLL.
When STPadLib.dll x86 is used with a programming language that uses the stdcall calling convention
(for example, Visual Basic 6), methods must be used that are also exported with stdcall. These methods
have the additional suffix ‘_stdcall’ (for example, STDeviceGetCount_stdcall()), but are
otherwise no different from the methods exported with cdecl.

 STPadLibNet.dll
The STPadLibNet.dll is a .NET class library. It can be used in all common .NET-compatible development
environments. All classes, enumerations, etc., are contained in the signotec.STPadLibNet namespace.
This component should be used if .NET is used for development purposes. It contains a non-visual as
well as a visual (Windows Forms Control) class. The two classes can also be combined.
The component is a ‘mixed mode DLL’ component and contains both managed and non-managed code.
In order that the non-managed objects can be released correctly from the memory, Dispose() should
always be called as soon as the instance is no longer required.
The DLL is signed with a ‘strong name’ and may be registered in the ‘Global Assembly Cache’ (GAC).
However, if the DLL is located in the search path of the application, this version will always be used. The
assembly version will only change if the interface is changed and may therefore differ from the file
version.

3.4.1 Using the STPadLibControl class
The STPadLibControl class is derived from System.Windows.Forms.UserControl. It can be
embedded as a visual control element in a Windows form or in a WPF window via a Windows Forms
Host. All documented methods, properties and events are available.

3.4.2 Using the STPadLib class
The STPadLib class is designed for communicating without a visual control element. Only the non-visual
methods, properties and events are therefore available.

Guide_SIGAPI_20210108_ENG 11

3.4.3 Using both classes
It is also possible to use the STPadLib and STPadLibControl classes simultaneously in a project. For
example, a STPadLib object, which is responsible for basic communication tasks (searching for devices
etc.), can remain valid during the entire runtime of a program. As soon as the signing process has
started, a STPadLibControl object to which the STPadLib object is passed, can be generated in a dialog
box (also see ControlSetSTPadLib()). This means that a pad search and initialisation does not
need to be performed each time the dialog box is generated.
This technology is used in the supplied demo application.

 Using multiple instances
The STPadCapt.ocx and STPadLibNet.dll classes can be instantiated more than once. If multiple instances
of a class are used in different memory areas (for example, different programs), these instances are
completely independent of each other and there is nothing else to be aware of.
If multiple instances of a class are used in the same memory area, please note the following:

- When DeviceGetCount() is called, it is valid for all instances and therefore only needs to be
executed in one instance.

- If a connection to a device has already been opened by an instance, only the previously
determined value is returned when DeviceGetCount() is called in another instance, i.e., no
new search is carried out.

 Data formats
The data formats of the individual components vary according to the technology used. The
STPadCapt.ocx component uses only OLE-compliant and COM-compliant data types for complex data
structures (VARIANT, BSTR, etc.), while the STPadLib.dll uses types such as BYTE and LPCWSTR and the
STPadLibNet.dll uses byte and string.
Signatures can be returned in BMP, GIF, JPEG, PNG and TIFF format. As a rule, you should use the TIFF
format as this offers the best results with the smallest file size. JPEG is an image format with lossy
compression and is not recommended.

 SignData structures
The signoPAD API components can return a captured signature as a data structure in two different
SignData formats. Both formats are encrypted, compressed, biometric structures that can be stored in a
database or as a tag in a TIFF or PDF document.
The conventional SignData format is encrypted symmetrically and can therefore be unpacked again and
visualised by other signotec components. The new RSA encrypted SignData format is currently only
supported by signoPAD API components and must be converted into the conventional format where
required using the RSADecryptSignData() method. Users of the RSA-encrypted format must have
the appropriate private RSA key otherwise the data cannot be decrypted.
A separate API (signoAPI) is available for the (ISO-compliant) signature of PDF and TIFF documents. This
API includes a wide range of functions for PDF management along with much more. Please speak to
your signotec contact if you are interested.
Conventional SignData structures can be visualised in real time using the signview.dll component from
the signoAPI. The component is included as a demo version; the full version is included in the signoAPI.

 Notes for redistribution
The signoPAD-API setup may be installed with the ‘silent’ flag set. For details, please see the ‘signoPAD
API Installation Guide,’ which can be found in the Download area at www.signotec.com.
You can, of course, redistribute individual files from the signoPAD API in a separate Setup. Essentially,
only the ‘STPad’ component used by your application, possibly the STPad.ini and STPadStores.ini files,

http://www.signotec.com/

Guide_SIGAPI_20210108_ENG 12

and, depending on the component used, Microsoft Runtime and/or Framework files, are required to
support the signotec Sigma, Zeta, Omega, Gamma, Delta and Alpha LCD signature pads. See also section
‘Dependencies’. If your application uses the STPadCapt.ocx component, it must be registered in the
system using regsvr32.
The signoPAD API Setup installs files at the following locations:

Component Installation path
STPadCapt.ocx %PROGRAMFILES%\signotec\Dll

or %PROGRAMFILES(x86)%\signotec\Dll
STPadLib.dll <Installation path>\signoPAD-API\STPadLib

<Installation path>\signoPAD-
API\Samples\C++\Binary\STPadLib Demo App

STPadLib.h <Installation path>\signoPAD-API\STPadLib
STPadLib.lib <Installation path>\signoPAD-API\STPadLib
STPadLibNet.dll <Installation path>\signoPAD-API\STPadLibNet

<Installation path>\signoPAD-API\Samples\C#.NET
(WPF)\Binary\STPadLibNetDemoApp
<Installation path>\signoPAD-
API\Samples\C#.NET\Binary\STPadLibNetDemoApp
<Installation path>\signoPAD-
API\Samples\VB.NET\Binary\STPadLibNetDemoApp

STPadLibNet.xml <Installation path>\signoPAD-API\STPadLibNet
STPdfLib16.dll <Installation path>\signoPAD-API\STPdfLib

%PROGRAMFILES%\signotec\Dll
or %PROGRAMFILES(x86)%\signotec\Dll
<Installation path>\signoPAD-
API\Samples\C#.NET\Binary\STPadLibNetDemoApp
<Installation path>\signoPAD-
API\Samples\VB.NET\Binary\STPadLibNetDemoApp

STPad.ini %COMMONPROGRAMFILES%\signotec\Config
or %COMMONPROGRAMFILES(x86)%\signotec\Config

STPadStores.ini %COMMONPROGRAMFILES%\signotec\Config
or %COMMONPROGRAMFILES(x86)%\signotec\Config

signview.dll %PROGRAMFILES%\signotec\Dll
or %PROGRAMFILES(x86)%\signotec\Dll

Various sample applications
including source code

<Installation path>\signoPAD-API\Samples

Guide_SIGAPI_20210108_ENG 13

4 Signing and encryption with signotec LCD signature pads
The signotec LCD Sigma (from firmware 1.16), Zeta, Omega (from firmware 1.25), Gamma, Delta and
Alpha signature pads offer various options to encrypt or sign data with RSA keys. The biometric data of a
signature captured with a device can be encrypted to prevent this extremely sensitive data from being
manipulated. Hash values can be signed to prove the integrity of data. These hash values can be
transferred to the signature device in the form of a SHA-1 or SHA-256. Alternatively, however, the device
can calculate the SHA-1, SHA-256 or SHA-512 values itself using the displayed screen content.
In the case of advanced signatures using signotec pads, the signer is only a temporary owner of the
signature certificate, which is stored in the signature device. While the signer is not the actual owner, at
the moment of signing the signer is the holder of the certificate, which satisfies the requirements of the
Signature Act. However, the signature cannot be assigned to the signer using the signature certificate;
rather, it must be assigned based on the biometric characteristics of the signature. For this reason, this
biometric data must be afforded special protection, comparable to the protection of a signature
certificate and PIN in the case of a qualified electronic signature.
signotec pads provide this protection by enabling the encryption of this sensitive data with a public RSA
key. Only the owner of the related private key is able to decrypt the biometric data. Therefore, it is
recommended that this private key be stored in a trustworthy place (e.g., with a notary) and that it is
only used when the identity of a signer must be authenticated by a handwriting expert (e.g., before a
court).
In addition, the signotec pads offer a procedure that enables the inseparable assignment of biometric
data to the signed document or image content. The unsigned document or the image displayed on the
signature device can be signed on the signature device in the form of a hash value combined with the
hash value of the biometric data. It is not technically possible to sign another document using the
identical biometric data in the same signature device.
The following section describes two typical scenarios in which data is encrypted and signed. The sample
code is written in C# and uses the STPadLibNet.dll component; the code is similar for other languages
and components.

 Signing documents
First, the hash value of the document to be signed must be calculated (hereafter referred to as hash 1).
The SHA-1 and SHA-256 procedures are permissible for this purpose. Before signing begins, the hash
value must be transferred to the signature device (prior to this, of course, the connection must be
established with the pad and the desired image content displayed; these steps are not listed in the
sample code):
try
{
 stPad.RSASetHash(hash1, HashAlgo.SHA256, HashFlag.None);
 stPad.SignatureStart();
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Calling SignatureStart() starts the process of capturing the signature. Hash 1 is then encrypted
and entered in the biometric data; once the signature has been captured, hash 1 can be digitally signed
with the hash value of the biometrics (hereafter referred to as hash 2). Since hash 1 can only be
transferred before SignatureStart() is called, it is not possible to assign it to a set of biometric data
retroactively.
Once the signature has been captured, the capturing process must be completed as usual using
SignatureStop() or SignatureConfirm().
Hash 1 and hash 2 can now be linked and signed. It is recommended to use the RSASSA-PSS signature
scheme; alternatively, a padding can also be used without a hash OID in accordance with RSASSA-

Guide_SIGAPI_20210108_ENG 14

PKCS1-V1_5. This step can be skipped. However, in this case, it will only be possible to retrospectively
check that hash 1 is correct by decrypting the biometric data.
byte[] signature = null;
try
{
 signature = stPad.RSASign(RSAScheme.PSS, HashValue.Combination,
SignFlag.None);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

The biometric data encrypted using RSA is then collected:
byte[] signData;
try
{
 signData = stPad.RSAGetSignData(SignDataGetFlag.None);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

The signature (signature) and the biometric data (signData) must then be integrated into the
document. While this means the document is signed, it has not yet been provided with an advanced
electronic signature. To do this, the entire document must be digitally signed again in the form of a hash
value (hereafter referred to as hash 3). If the document is signed according to PKCS#1, the public
certificate to verify the signature must be collected from the pad in addition to the signature:
byte[] signature = null;
X509Certificate2 cert;
try
{
 stPad.RSASetHash(hash3, HashAlgo.SHA256, HashFlag.None);
 signature = stPad.RSASign(RSAScheme.PKCS1_V1_5,
HashValue.Hash1, SignFlag.None);
 cert = (X509Certificate2)stPad.RSASaveSigningCertAsStream
(CertType.Cert_DER);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Alternatively, the signature can also be created in the PKCS#7 format, which already contains the public
certificate. The following method is recommended when signing PDF documents according to the so-
called DigSig standard:
byte[] signature = null;
try
{
 stPad.RSASetHash(hash3, HashAlgo.SHA256, HashFlag.None);
 signature = stPad.RSASign(RSAScheme.PKCS1_V1_5,
HashValue.Hash1, SignFlag.PKCS7 | SignFlag.IncludeChain);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Guide_SIGAPI_20210108_ENG 15

In the case of a DigSig signature, the signature (signature) and, if possible, the public certificate
(cert) must be integrated into the document in accordance with the standard. In the case of a
proprietary signature, this data must be stored in a different manner (e.g., in a database) and assigned to
the document. In both cases, this signature is used to check whether the document was changed after
signing.

 Signing of image content (content signing)
signotec LCD signature pads can calculate and then sign a hash value using the image content displayed
during the signature. To do this, the desired image content must first be transferred to the pad using the
conventional methods DisplaySetImage(), DisplaySetText(), etc.; during this process, it does
not matter whether the data is transferred directly to the visible foreground buffer or the invisible
background buffer or non-volatile memory. However, it is recommended that you use the so-called
DisplayHashBuffer.
Then the RSACreateDisplayHash() method must be accessed to calculate a hash value (hereafter
referred to as hash 1) in the signature device using the content of the specified source memory. The
algorithms SHA-1, SHA-256 or SHA-512 can be used for this purpose. The method returns the image data
stream that was used to calculate hash 1 in a proprietary form so that hash 1 can be recalculated at a
later stage. This image data stream can be converted into an image, either immediately or at a later
stage, using the RSACreateHashedImage() method in order to be able to reproduce the image
content displayed during the signature.

byte[] imageData = null;
Bitmap bitmap;
try
{
 imageData = stPad.RSACreateDisplayHash(HashAlgo.SHA256,
DisplayTarget.DisplayHashBuffer);
 bitmap = stPad.RSACreateHashedImage(imageData, Color.Black,
11);
 stPad.SignatureStart();
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Content signing is started through the calling of SignatureStart(). The image content that was
previously used to calculate hash 1 is now displayed (if this has not already occurred), and the signature
process begins. Outputs on the screen are no longer possible in this state. This allows the signature
device to ensure that only the content that was previously used to calculate hash 1 is visible during
signing. Hash 1 is then encrypted and entered in the biometric data; once the signature has been
captured, hash 1 can be digitally signed with the hash value of the biometrics (hereafter referred to as
hash 2).
Once the signature has been captured, the capturing process must be completed as usual using
SignatureStop() or SignatureConfirm().
First, hash 1 and hash 2 have to be linked and signed. It is recommended to use the RSASSA-PSS
signature scheme; alternatively, a padding can also be used without a hash OID in accordance with
RSASSA-PKCS1-V1_5. The public certificate to verify the signature must be collected from the pad in
addition to the signature:

Guide_SIGAPI_20210108_ENG 16

byte[] signature = null;
X509Certificate2 cert;
try
{
 signature = stPad.RSASign(RSAScheme.PSS, HashValue.Combination,
SignFlag.None);
 cert = (X509Certificate2)stPad.RSASaveSigningCertAsStream
(CertType.Cert_DER);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

The biometric data encrypted using RSA is then collected:
byte[] signData;
try
{
 signData = stPad.RSAGetSignData(SignDataGetFlag.None);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

The signature (signature) and the biometric data (signData) must then be stored, for example in a
database, along with the image data stream (imageData) and the signature certificate (cert). This
data can be used at a later stage to unambiguously prove that, during the capture of the signature
defined by the biometric data, only the screen content defined by the image data stream was visible on
the signature device. This is possible by calculating hash 1 and hash 2 based on this data and comparing
these values with the signature.

Guide_SIGAPI_20210108_ENG 17

5 Description of possible error messages
Most methods of the STPadCapt.ocx component and the STPadLib.dll return an integer value, which is
always negative in the case of an error. A description of the respective error messages is provided in the
following table. An error description can be retrieved at runtime by calling the
ControlGetErrorString() method.
The STPadLibNet.dll throws an STPadException if an error occurs, which is why all calls should be
enclosed with try() & catch(). The Message and ErrorCode properties of STPadException
contain an error description or one of the error codes listed below.
The error descriptions are available in the components in German, English, French and Italian.

Error Description
-1 A NULL pointer was passed.
-3 One of the parameters that were passed contains an invalid value.
-4 The signing pad is already being used by another application.
-5 No connection has been opened to this signature pad.
-6 A connection has already been opened.
-8 No device with this ID is connected.
-9 The LED colour that was passed cannot be set.
-12 The function could not be executed because the signature capture process is running.
-13 No further hotspots can be added.
-14 The function could not be executed because the coordinates of an active hotspot

overlap with the signature window or another active hotspot.
-15 The function could not be executed because no signature capture area has been set.
-17 The function could not be executed because no signature capture process was started.
-18 An error occurred while attempting to reserve memory.
-19 An error occurred while initialising a system resource.
-20 An error occurred while communicating with the signing pad.
-21 The rectangle that was passed is invalid.
-22 No compatible devices connected or the connection to a device has been cut.
-25 The connected device does not support this function or one of the parameters.
-26 Error while reading or writing a file.
-27 An error occurred when saving the key or certificate.
-28 The required key and/or certificate or CSR is not available.
-30 An internal error occurred in the signing pad during calculation.
-31 The password is invalid because it is too short, or the transferred data is too large for

the key stored in the signing pad.
-32 Data was lost when transferring signature data from the signature device.
-33 The function could not be executed because the device is in ‘Content signing’ mode.
-34 The function could not be executed because the key is password protected and no

password was entered or the password that was entered was incorrect
-36 The option could not be changed because it is password protected and no password

was entered, or the password that was entered was incorrect.
-39 Signature capture could not be started because pen-controlled scrolling is activated.
-40 The function could not be executed because the device does not feature an NFC

reader.
-41 The function could not be executed due to an unknown error. It may be necessary to

update the software.
-42 The signature key could not be accessed because it is password protected and an

incorrect password has been entered too often. Please renew the signature key.
-43 The function could not be executed because no signing password has been assigned

yet. Please assign a signing password first.

Guide_SIGAPI_20210108_ENG 18

-44 The function could not be executed because a certificate chain could not be built to a
trusted root certification authority.

-45 Signature capture could not be started because a keypad hotspot is defined.
-81 The document could not be loaded because it is password protected and no password

was entered, or the password that was entered was incorrect.
-82 The function could not be executed because neither the STPdfLib16.dll nor the

STPdfLib13.dll could be loaded.
-83 The function cannot be executed because no document has been loaded.
-84 The function could not be executed because the secure sign mode is active.
-85 The data does not contain biometric data.
-86 The data could not be decrypted.
-87 The public key of the transferred certificate does not match the key stored in the pad.
-88 The certificate could not be decoded.
-89 The password that was passed is invalid.
-90 The function could not be executed because no Hash 1 has been passed.
-91 No Hash 2 has been computed on the biometric data because no hash algorithm has

been set.
-92 The function could not be executed because the ‘Content signing’ mode has already

been left.
-93 The function could not be executed because an overlay rectangle is set.
-94 The function could not be executed because the screen content is scrolled or pen-

controlled scrolling is activated.
-95 The function could not be executed because it would have activated the scroll mode

that is not possible if a hotspot outside the overlay rectangle is defined.
-97 An error occurred during initialisation. Please restart the software.
-98 The minimum password length could not be set because the connected device does

not support this function or an invalid value was set for the property
RSASignPasswordLength.

-99 The function could not be executed because keypad hotspots can only be inverted if
the foreground memory is set as active device memory.

Guide_SIGAPI_20210108_ENG 19

6 Information about the available image memory
The signotec LCD Signature Pads have several image memories, which can be used by different
methods. An image memory has at least the size of the display and can store one picture in a maximum
of this size. Adding another image overrides the areas it overlaps with the existing memory content.
Adding multiple images to one memory can therefore create a collage.
Depending on the model, a different number of volatile and non-volatile memories are available.

 Volatile image memory
All signotec LCD Signature Pads have at least two volatile image memories, one foreground memory
containing the current display content and one background memory, which can be used to prepare the
display content. It can be written in both of the memories.
The content of the volatile image memory is lost when you close the connection to the device.

6.1.1 Model type Sigma
The two volatile image memories have the size of the display (320 x 160 pixels).
The transmission and representation of images is usually so fast that there is no visible lag. For more
complex representations that consist of several individual images, it may be useful to first save them in
the background memory before copying them into the foreground memory.

6.1.2 Model type Zeta
The two volatile image memories have the size of the display (320 x 200 pixels).
The transmission and representation of images is usually so fast that there is no visible lag. For more
complex representations that consist of several individual images, it may be useful to first save them in
the background memory before copying them into the foreground memory.

6.1.3 Model type Omega
The Omega model has three volatile image memories, two that have the doubled size of the display (640
x 960 pixels) to be used as foreground and background memory and one that has the size of the display
(640 x 480 pixels) to be used as overlay memory. Its contents can be overlaid over the current display
content.
The speed of displaying an image in the Omega model with firmware up to Version 1.40 depends on the
size and content of the images. The image composition is usually visible. Therefore, images should
always be stored first in the background memory and then moved into the foreground memory.
An image is displayed in the Omega model with firmware 2.0 or newer only after it has been transferred;
the image composition is not visible. The speed of the image transmission depends on the size and
content of the images and the operating mode. If possible, the device should always be operated in
WinUSB mode. To this end, it is necessary to separately install the signotec WinUSB driver (this is a
component of the signoPAD-API). For more complex representations that consist of several individual
images, it can generally be useful to first save them in the background memory before copying them
into the foreground memory.

6.1.4 Model type Gamma
The Gamma model has three volatile image memories, two that are larger than the display (800 x 1440
pixels) to be used as foreground and background memory and one that has the size of the display (800 x
480 pixels) to be used as overlay memory. Its contents can be overlaid over the current display content.
With the Gamma model, an image is only displayed after it has been transferred; the image composition
is not visible. The speed of the image transmission depends on the size and content of the images and
the operating mode. If possible, the device should always be operated in WinUSB mode. To this end, it is
necessary to separately install the signotec WinUSB driver (this is a component of the signoPAD-API). For

Guide_SIGAPI_20210108_ENG 20

more complex representations that consist of several individual images, it can generally be useful to first
save them in the background memory before copying them into the foreground memory.

6.1.5 Model type Delta
The Delta model has three volatile image memories, two that are larger than the display (1280 x 37,600
pixels) to be used as foreground and background memory one that is the size of the display (1280 x 800
pixels) to be used as overlay memory. Its contents can be overlaid over the current display content.
The speed of displaying a picture in the Delta model depends on the size and content of the images as
well as the operating mode. The image composition is usually visible. Therefore, images should always
be stored first in the background memory and then moved into the foreground memory. If possible, the
device should always be operated in WinUSB mode. To this end, it is necessary to separately install the
signotec WinUSB driver (this is a component of the signoPAD-API).

6.1.6 Model type Alpha
The Alpha model has three volatile image memories, two that are larger than the display (2048 x 2048
pixels) to be used as foreground and background memory one that is the size of the display (768 x 1366
pixels) to be used as overlay memory. Its contents can be overlaid over the current display content.
With the Alpha model, an image is only displayed after it has been transferred; the image composition is
not visible. The speed of the image transmission depends on the size and content of the images and the
operating mode. If possible, the device should always be operated in WinUSB mode. To this end, it is
necessary to separately install the signotec WinUSB driver (this is a component of the signoPAD-API). For
more complex representations that consist of several individual images, it can generally be useful to first
save them in the background memory before copying them into the foreground memory.

 Non-volatile image memory
Depending on the model, a different number of non-volatile memories are available. The saving of
images in non-volatile image memory lasts longer than storing in volatile image memory, but the
content remains unchanged even after switching off the device. An intelligent memory management
detects whether an image to be stored is already stored in the device so that only the first time it’s
stored it comes to a delay.

6.2.1 Model type Sigma
The Sigma model has one non-volatile image memory in the size of the display (320 x 160 pixels), which
can only be used for the standby image. Due to the rapid transmission and display of pictures, it is not
necessary to be able to save other images permanently.

6.2.2 Model type Zeta
The Zeta model has one non-volatile image memory in the size of the display (320 x 200 pixels), which
can only be used for the standby image. Due to the rapid transmission and display of pictures, it is not
necessary to be able to save other images permanently.

6.2.3 Model type Omega
The Omega model has eleven non-volatile image memories, which can be used for the standby image,
the slide show and optimizations of the program. The memories, used for the standby image or the slide
show, are read-only and can be freed only by disabling the standby image or the slide show.
One non-volatile image memory has the doubled size of the display (640 x 960 pixels), ten memories
have the size of the display (640 x 480 pixels).

Guide_SIGAPI_20210108_ENG 21

To use a non-volatile memory, this must be reserved first. This is done by calling the
DisplaySetTarget() method. The size of the currently selected memory can be queried using the
DisplayTargetWidth and DisplayTargetHeight properties.
The WinUSB operating mode which is available from Firmware 2.0 does not require the use of non-
volatile memory to optimise the program, as image transmission is very fast. However, it depends on the
individual case at hand and the developer should make the final decision.

6.2.4 Model type Gamma
The Gamma model has ten non-volatile image memories, which can be used for the standby image, the
slide show and optimisations of the program. The memories, used for the standby image or the slide
show, are read-only and can be freed only by disabling the standby image or the slide show.
The ten non-volatile memories are the same size as the display (800 x 480 pixels).
To use a non-volatile memory, this must be reserved first. This is done by calling the
DisplaySetTarget() method. The size of the currently selected memory can be queried using the
DisplayTargetWidth and DisplayTargetHeight properties.
The WinUSB operating mode does not require the use of non-volatile memory to optimise the program,
as image transmission is very fast. However, it depends on the individual case at hand and the developer
should make the final decision.

6.2.5 Model type Delta
The Delta model has 32 non-volatile image memories, which can be used for the standby image, the
slide show and optimisations of the program. The memories, used for the standby image or the slide
show, are read-only and can be freed only by disabling the standby image or the slide show.
The 32 non-volatile memories are the same size as the display (1280 x 800 pixels).
To use a non-volatile memory, this must be reserved first. This is done by calling the
DisplaySetTarget() method. The size of the currently selected memory can be queried using the
DisplayTargetWidth and DisplayTargetHeight properties.
The WinUSB operating mode does not require the use of non-volatile memory to optimise the program,
as image transmission is very fast. However, it depends on the individual case at hand and the developer
should make the final decision.

6.2.6 Model type Alpha
The Alpha model has ten non-volatile image memories, which can be used for the standby image, the
slide show and optimisations of the program. The memories, used for the standby image or the slide
show, are read-only and can be freed only by disabling the standby image or the slide show.
The ten non-volatile memories are the same size as the volatile memories (2048 x 2048 pixels).
To use a non-volatile memory, this must be reserved first. This is done by calling the
DisplaySetTarget() method. The size of the currently selected memory can be queried using the
DisplayTargetWidth and DisplayTargetHeight properties.
The WinUSB operating mode does not require the use of non-volatile memory to optimise the program,
as image transmission is very fast. However, it depends on the individual case at hand and the developer
should make the final decision.

 Copying between image memories
The contents can be copied between the most of the available image stores. The content of background
memory cannot be copied to the foreground memory; it can only be moved. The contents of the overlay
memory cannot be copied but only overlaid over the display content.
Typical copy operations are copying from a non-volatile image memory in a volatile image memory and
moving from the volatile background memory into the foreground memory. Copying an image within
the device is always faster than sending this image from the PC to the device. Please refer to the

Guide_SIGAPI_20210108_ENG 22

descriptions of the DisplaySetImageFromStore() and DisplaySetOverlayRect() methods
for details.

 The typical process
Most applications use the same images with possibly variable units (such as document-related texts) for
the signature process. It therefore makes sense to store images that are the same each time in one of the
non-volatile memory if possible. The following is the typical work flow for this scenario (C# sample code
and use of the component STPadLibNet.dll; code is similar for other languages and components):
First, the images are loaded, which will be permanently stored in the device, since they change rarely. A
memory is reserved by calling the DisplaySetTarget() method with the value -1. The return value
of the method is the ID of the memory used. If no non-volatile image memory is available, the
background buffer is set as an image buffer (ID = 1). This is always the case when using the Sigma or Zeta
models. When using the Omega, Gamma and Alpha models, the number of available memories can be
less than expected when a slide show is configured.
Text and images that are added to a non-volatile memory are only saved locally to begin with and are
sent to the device only when DisplaySetImageFromStore() or
DisplayConfigSlideShow() is called in order to be able to compare the image (which may be
composed of several texts and images) with the image already stored in the device. Thus only when one
of these methods is called, there will be a noticeable delay.
DisplayTarget targetStore;
try
{
 targetStore = stPad.axSTPadCapt1.DisplaySetTarget
(DisplayTarget.NewStandardStore);
 stPad.DisplaySetImageFromFile(10, 10, @"C:\1.bmp");
 stPad.DisplaySetText(200, 160, TextAlignment.Left,
"Signature:");
 stPad.DisplaySetImageFromFile(220, 400, @"C:\2.bmp");
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

The content can now be copied to a volatile image memory, typically the background
memory(DisplaySetTarget(DisplayTarget.BackgroundBuffer)). If the images have
already been written to the background memory because no non-volatile memory was available (see
above), the DisplaySetImageFromStore() method will not function, however it will also not
produce any errors and can therefore be safely called.
try
{
 stPad.DisplaySetTarget(DisplayTarget.BackgroundBuffer);
 stPad.DisplaySetImageFromStore(targetStore);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Now content, that change with every signature process, can be added to the background memory.

Guide_SIGAPI_20210108_ENG 23

try
{
 stPad.DisplaySetImageFromFile(120, 400, @"C:\3.bmp");
 stPad.DisplaySetText(200, 160, TextAlignment.Left,
"01.01.2010");
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

In the background memory there is now a collage of two images and a text copied from a non-volatile
memory and an image and a text that have been sent from the PC. This collage can now be moved into
the foreground memory and thus displayed on the screen. The total composition has happened before
in the background buffer and thus "invisible".
try
{
 stPad.DisplaySetTarget(DisplayTarget.ForegroundBuffer);

stPad.DisplaySetImageFromStore(DisplayTarget.BackgroundBuffer);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

The process described must be performed every time a connection is opened. When a connection is
closed all information about reserved memories is lost. Only information regarding which display
content is stored in which non-volatile memory remains saved on the device (even when it is switched
off).

 The standby feature
The signotec LCD signature pads (Omega, Gamma, Delta and Alpha models only) can display one or
more images automatically when not in use (no established connection). These images are stored
permanently in the device and they are displayed without launching any application on the PC.
Image memories that are used by the standby feature are write protected and cannot be used for by an
application.

6.5.1 Displaying a logo
In all devices, an image that is displayed automatically in standby can be stored permanently. Please
refer to the descriptions of the DisplaySetStandbyImage() and
DisplaySetStandbyImageFromFile() methods for details.

6.5.2 Displaying a slide show
As an alternative to a logo, the Omega, Gamma, Delta and Alpha models can display a slide show
containing up to ten (Gamma and Alpha), 11 (Omega) or 32 (Delta) images. To configure a slide show,
please follow these steps:
First, a standby mode that may be configured must be disabled by calling
DisplayConfigSlideShow() in order to remove write protection from all images. The current
configuration can be retrieved with the DisplayGetStandbyId() method.
Then any contents can be written to one or more of the non-volatile image memories (as described in
7.4). When all the contents have been written, the desired image memories must be configured using
the DisplayConfigSlideShow() or DisplayConfigSlideShowEx() method.

Guide_SIGAPI_20210108_ENG 24

 Exclusive use of non-volatile memory
Since after closing the connection to a device all the information about reserved stores is lost, two
applications may use the same memory and thus always overwrite it. As a result, the use of non-volatile
memories can even cause slower program execution.
To avoid this problem, a user may exclusively reserve up to ten image memories of an Omega device for
a particular application. These memories are not available to other applications and thus cannot be
overwritten accidently.

6.6.1 Implementation in an application
Applications must provide the component with their name in order to support this functionality. This is
done with the ControlAppName property. Users can enter this name in the configuration file and
reserve a certain number of memories for this application.

6.6.2 Assign non-volatile memory to an application
Memories are assigned in the STPadStores.ini file, which must be located in the
‘%COMMONPROGRAMFILES%\signotec\config’ folder, or in the case of 64-bit Windows, in the
‘%COMMONPROGRAMFILES(x86)%\signtotec\config’ folder. The configuration in this file only applies to
this workstation; if the pad is connected to another PC without configuration, all memories will be
available there again.
The file can contain up to ten sections (for ten applications). The names of the sections are
[Application1], [Application2], etc.
Each section contains two keys named Name and StoreCount. The Name key contains the name given
by the application (see above). The StoreCount key contains the number of memories to be reserved.
It does not matter if memory is reserved for one or several applications, but the sum of the reserved
memories must not exceed 10. The Omega memory with a size of 640 x 960 pixels cannot be used
exclusively.
[Application1]
Name=MyGreatApp
StoreCount=2

[Application2]
Name=Another Great App
StoreCount=4

If not all of the available memory is assigned exclusively, all further image memories are available for all
applications. If a standby image or a slide show has already been configured for the device, the
maximum number of available memories is reduced accordingly. If a standby image or slide show is
configured by an application on a workstation with a memory configuration, only memories can be used
in this context that have been reserved for the respective application or have not been reserved at all.

Guide_SIGAPI_20210108_ENG 25

7 Methods
Methods are named according to the following naming convention:

- Methods that set or query general hardware properties begin with ‘Device’
- Methods that set or query sensor properties begin with ‘Sensor’
- Methods that apply to the signature begin with ‘Signature’
- Methods that set or query LCD properties begin with ‘Display’
- Methods that set or query component properties begin with ‘Control’
- Methods that are connected to the RSA functionality of the device begin with ‘RSA’.
- Methods that are connected to the loading of PDF documents begin with ‘PDF’

The methods of the STPadLib.dll component all begin with ‘ST,’ for example, ‘STDeviceOpen()’.
Some methods and parameters are not contained in all components, so you should always take note of
the given method declaration. The methods are declared by the STPadCapt.ocx component in MIDL
syntax, by the STPadLib.dll component in C syntax and by the STPadLibNet.dll component in C# and VB
syntax.

 DeviceSetComPort method
This method defines the interfaces to be searched for devices when DeviceGetCount() is called up.
A search will only be made for HID devices unless this method is called up.
In a Terminal Server environment, it is possible to pass through devices via a virtual channel from the
client to the server. The API independently detects whether such a channel is configured. The channel
appears as COM1 or COM2 for the application. This means that existing applications that communicate
with a signature device via the serial interface do not need to be adjusted for operation via a virtual
channel. For details of the signotec Virtual Channel, please get in touch with your contact at signotec.
In the STPad.ini configuration file, you can specify that the search will initially be made via the virtual
channel provided at least one COM port has been specified. For this purpose, the ForceVC key must be
set to YES.
In order to query the connection to which an existing device is connected please use
theDeviceGetComPort() and DeviceGetIPAddress()methods.

Parameter Values I/O Description
BSTR bstrPortList

LPCWSTR
szPortList

string portList

ByVal portList As
String

A list separated by semi-colons with at least one of the following
members:
"HID" I A search will be made for HID and WinUSB devices.
"IP=<
Addre
ss>:
<Port
>"

I An Alpha or Delta with an Ethernet connection or an
HID device that is connected to a signotec Ethernet
USB adapter will be searched for at the specified IP
address; <Address> is the IP address of the device
and has the format x.x.x.x or the host name,
<Port> is the port via which the signature device
should be activated, generally 1002. A valid value
would therefore be, for example,
‘IP=192.168.100.100:1002’ or
‘IP=host1:1002’; for details about the signotec
Ethernet USB adapter, please refer to your contact at
signotec.

"all" I A search will be made for devices on all COM ports
and/or virtual channels; this search may take an
extremely long time depending on the hardware
configuration.

Guide_SIGAPI_20210108_ENG 26

Whole
numbe

r

I A search will be made for a serial device on the COM
port and/or virtual channel with the specified
number (>=0); this search may take an extremely
long time if no signotec device is connected to the
port.

"LowS
peed"

I A search will be made on the COM ports only for
devices that communicate at a baud rate of 115200
(Sigma, Zeta, Omega, Gamma plus Delta and Alpha
in ‘Low Speed’ mode). The search is accelerated if
COM ports to which no signotec LCD signature pads
are connected are also searched; this does not
influence the search on virtual channels or for HID,
WinUSB or IP devices

"High
Speed
"

I A search will be made on the COM ports only for
devices that communicate at a baud rate of 2
Mbaud (Delta and Alpha in ‘High Speed’ mode),
which accelerates the search; this does not influence
the search on virtual channels or for HID, WinUSB or
IP devices

Return value Values Description
LONG

int

Integer

>= 0 Number of detected members in the transferred list (for the
member "all" the return value 256 will be added to old
versions instead of 1 for compatibility reasons)

< 0 Error (not for STPadLibNet.dll)

7.1.1 STPadCapt.ocx
Available from Version 8.0.6 onwards. The status described is available from Version 8.1.2 onwards.
LONG DeviceSetComPort(BSTR bstrPortList)

7.1.1.1 Implementation in C#
int nPortCount =
axSTPadCapt1.DeviceSetComPort("HID;1;4;IP=192.168.100.100:1002");
if (nPortCount < 0)
 MessageBox.Show(String.Format("Error {0}", nPortCount);
else
 MessageBox.Show(String.Format("{0} ports set.", nPortCount);

7.1.1.2 Implementation in Visual Basic
Dim nPortCount As Integer =
AxSTPadCapt1.DeviceSetComPort("HID;1;4;IP=192.168.100.100:1002")
If nPortCount < 0 Then
 MsgBox("Error " & CStr(nPortCount))
Else
 MsgBox(CStr(nPortCount) & " ports set.")
End If

7.1.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.1.2 onwards.
LONG STDeviceSetComPort(LPCWSTR szPortList)

Guide_SIGAPI_20210108_ENG 27

7.1.2.1 Implementation in C++
LONG nPortCount =
STDeviceSetComPort(L"HID;1;4;IP=192.168.100.100:1002");
if (nPortCount < 0)
 wprintf(L"Error %d", nPortCount);
else
 wprintf(L"%d ports set", nPortCount);

7.1.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.1.2 onwards.
int DeviceSetComPort(string portList)

Function DeviceSetComPort(ByVal portList As String) As Integer

7.1.3.1 Implementation in C#
try
{
 int nPortCount =
stPad.DeviceSetComPort("HID;1;4;IP=192.168.100.100:1002");
 MessageBox.Show(String.Format("{0} ports set.", nPortCount));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.1.3.2 Implementation in Visual Basic
Try
 Dim nPortCount As Integer =
STPad.DeviceSetComPort("HID;1;4;IP=192.168.100.100:1002")
 MsgBox(CStr(nPortCount) & " ports set")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DeviceGetConnectionType method
This method returns the type of connection via which a device is connected.

Parameter Values I/O Description
LONG nIndex

int index

ByVal index As
Integer

>= 0 I Index of the device whose port number is to be
queried

Return value Values Description
LONG

int

Integer

0 HID
1 WinUSB
2 Serial or virtual channel
3 Ethernet
< 0 Error (not for STPadLibNet.dll)

7.2.1 STPadCapt.ocx
Available from Version 8.1.2 onwards.
LONG DeviceGetConnectionType(LONG nIndex)

Guide_SIGAPI_20210108_ENG 28

7.2.1.1 Implementation in C#
int nType = axSTPadCapt1.DeviceGetConnectionType(0);
switch (nType)
{
 case 0:
 MessageBox.Show("The device is connected via HID.");
 break;
 case 1:
 MessageBox.Show("The device is connected via WinUSB.");
 break;
 case 2:
 MessageBox.Show("The device is connected to a serial
port.");
 break;
 case 3:
 MessageBox.Show("The device is connected via IP.");
 break;
 default:
 MessageBox.Show(String.Format("Error {0}", nType);
 break;
}

7.2.1.2 Implementation in Visual Basic
Dim nType As Integer = AxSTPadCapt1.DeviceGetConnectionType(0)
Select Case nType
 Case 0
 MsgBox("The device is connected via HID.")
 Case 1
 MsgBox("The device is connected via WinUSB.")
 Case 2
 MsgBox("The device is connected to a serial port.")
 Case 3
 MsgBox("The device is connected via IP.")
 Case Else
 MsgBox("Error " & CStr(nType))
End Select

7.2.2 STPadLib.dll
Available from Version 8.1.2 onwards.
LONG STDeviceGetConnectionType(LONG nIndex)

Guide_SIGAPI_20210108_ENG 29

7.2.2.1 Implementation in C++
LONG nType = STDeviceGetConnectionType(0);
switch (nType)
{
 case 0:
 wprintf(L"The device is connected via HID.");
 break;
 case 1:
 wprintf(L"The device is connected via WinUSB.");
 break;
 case 2:
 wprintf(L"The device is connected to a serial port.");
 break;
 case 3:
 wprintf(L" The device is connected via IP.");
 break;
 default:
 wprintf(L"Error %d", nType);
 break;
}

7.2.3 STPadLibNet.dll
Available from Version 8.1.2 onwards.
int DeviceGetConnectionType(int index)

Function DeviceGetConnectionType(ByVal nIndex As Integer) As Integer

Guide_SIGAPI_20210108_ENG 30

7.2.3.1 Implementation in C#
try
{
 int nType = stPad.DeviceGetConnectionType(0);
 switch (nType)
 {
 case 0:
 MessageBox.Show("The device is connected via HID.");
 break;
 case 1:
 MessageBox.Show("The device is connected via
WinUSB.");
 break;
 case 2:
 MessageBox.Show("The device is connected to a serial
port.");
 break;
 case 3:
 MessageBox.Show("The device is connected via IP.");
 break;
 default:
 MessageBox.Show(String.Format("Unknown connection
type: {0}",
 nType));
 break;
 }
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.2.3.2 Implementation in Visual Basic
Try
 Dim nType As Integer = STPad.DeviceGetConnectionType(0)
 Select Case nType
 Case 0
 MsgBox("The device is connected via HID.")
 Case 1
 MsgBox("The device is connected via WinUSB.")
 Case 2
 MsgBox("The device is connected to a serial port.")
 Case 3
 MsgBox("The device is connected via IP.")
 Case Else
 MsgBox("Unknown connection type: " & CStr(nType))
 End Select
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DeviceGetComPort method
This method returns the number of the COM port or virtual channel to which a device is connected.

Guide_SIGAPI_20210108_ENG 31

Parameter Values I/O Description
LONG nIndex

int index

ByVal index As
Integer

>= 0 I Index of the device whose port number is to be
queried

Return value Values Description
LONG

int

Integer

>= 0 Number of the COM port for serial devices. (Note: Devices
that are not serially connected return 0; use
DeviceGetConnectionType() to ascertain the type of
connection)

< 0 Error (not for STPadLibNet.dll)

7.3.1 STPadCapt.ocx
Available from Version 8.0.8 onwards.
LONG DeviceGetComPort(LONG nIndex)

7.3.1.1 Implementation in C#
int nPort = axSTPadCapt1.DeviceGetComPort(0);
if (nPort < 0)
 MessageBox.Show(String.Format("Error {0}", nPort));
else
 MessageBox.Show(String.Format("This device is connected to COM
port {0}.", nPort));

7.3.1.2 Implementation in Visual Basic
Dim nPort As Integer = AxSTPadCapt1.DeviceGetComPort(0)
If nPort < 0 Then
 MsgBox("Error " & CStr(nPort))
Else
 MsgBox("This device is connected to COM port " & CStr(nPort))
End If

7.3.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDeviceGetComPort(LONG nIndex)

7.3.2.1 Implementation in C++
LONG nPort = STDeviceGetComPort(0);
if (nPort < 0)
 wprintf(L"Error %d", nPort);
else
 wprintf(L"This device is connected to COM port %d", nPort);

7.3.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
int DeviceGetComPort(int index)

Function DeviceGetComPort(ByVal nIndex As Integer) As Integer

7.3.3.1 Implementation in C#
try
{

Guide_SIGAPI_20210108_ENG 32

 int nPort = stPad.DeviceGetComPort(0);
 MessageBox.Show(String.Format(
 "This device is connected to COM port {0}.",
nPort));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.3.3.2 Implementation in Visual Basic
Try
 Dim nPort As Integer = STPad.DeviceGetComPort(0)
 MsgBox("This device is connected to COM port " & CStr(nPort))
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DeviceGetIPAddress method
You can use this method to retrieve the IP address of the signotec Ethernet USB adapter to which a
device is connected.

Parameter Values I/O Description
BSTR*
pbstrAddress

WCHAR
szAddress[32]

"" O The device is not connected via IP
max. 32
charact

ers

O Device IP address and port ("x.x.x.x:x")

LONG nIndex

int index

ByVal index As
Integer

>= 0 I Index of the device whose information is to be
queried

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error
string

String

"" The device is not connected via IP
max. 32
charact

ers

Device IP address and port ("x.x.x.x:x")

7.4.1 STPadCapt.ocx
Available from Version 8.0.25 onwards.
LONG DeviceGetIPAddress(BSTR* pbstrAddress, LONG nIndex)

7.4.1.1 Implementation in C#
string strAddress = "";
int nResult = axSTPadCapt1.DeviceGetIPAddress(ref strAddress, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);
else
 MessageBox.Show(String.Format("The device is connected to:
{0}", strAddress);

Guide_SIGAPI_20210108_ENG 33

7.4.1.2 Implementation in Visual Basic
Dim strAddress As String = ""
Dim nResult As Integer =
AxSTPadCapt1.DeviceGetIPAddress(strAddress, 0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
Else
 MsgBox("The device is connected to: " & strAddress)
End If

7.4.2 STPadLib.dll
Available from Version 8.0.25 onwards.
LONG STDeviceGetIPAddress(WCHAR szAddress[32], LONG nIndex)

7.4.2.1 Implementation in C++
WCHAR szAddress[32];
LONG nResult = STDeviceGetIPAddress(szAddress, 0);
if (nResult < 0)
 wprintf(L"Error %d", nResult);
else
 wprintf(L"The device is connected to: %s", szAddress);

7.4.3 STPadLibNet.dll
Available from Version 8.0.25 onwards.
string DeviceGetIPAddress(int index)

Function DeviceGetIPAddress(ByVal index As Integer) As String

7.4.3.1 Implementation in C#
try
{
 MessageBox.Show(String.Format("The device is connected to:
{0}", stPad.DeviceGetIPAddress(0)));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.4.3.2 Implementation in Visual Basic
Try
 MsgBox("The device is connected to: " &
STPad.DeviceGetIPAddress(0))
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DeviceGetCount method
This method searches for connected devices, generates an internal index beginning with 0 and returns
the number of devices detected. This value should be cached so that the method only needs to be
called, if the number of connected devices has changed. A device’s index is retained until the method is
called again. The index can be assigned to a device via the information returned by
DeviceGetInfo().

Guide_SIGAPI_20210108_ENG 34

By default, a search will only be made for HID and WinUSB devices that are locally connected. A search
will only be made for other devices if this has been configured previously by calling up
DeviceSetComPort().
Please observe the relevant information in the ‘Using multiple instances’ section.

- - - -
Return value Values Description
LONG

int

Integer

>= 0 Number of devices detected
< 0 Error (not for STPadLibNet.dll)

7.5.1 STPadCapt.ocx
Available from Version 8.0.1 onwards.
LONG DeviceGetCount()

7.5.1.1 Implementation in C#
int nDeviceCount = axSTPadCapt1.DeviceGetCount();
if (nDeviceCount < 0)
 MessageBox.Show(String.Format("Error {0}", nDeviceCount);
else
 MessageBox.Show(String.Format("{0} devices detected.",
nDeviceCount);

7.5.1.2 Implementation in Visual Basic
Dim nDeviceCount As Integer = AxSTPadCapt1.DeviceGetCount
If nDeviceCount < 0 Then
 MsgBox("Error " & CStr(nDeviceCount))
Else
 MsgBox(CStr(nDeviceCount) & " devices detected.")
End If

7.5.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDeviceGetCount()

7.5.2.1 Implementation in C++
LONG nDeviceCount = STDeviceGetCount();
if (nDeviceCount < 0)
 wprintf(L"Error %d", nDeviceCount);
else
 wprintf(L"%d devices detected.", nDeviceCount);

7.5.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
int DeviceGetCount()

Function DeviceGetCount() As Integer

Parameter Values I/O Description

Guide_SIGAPI_20210108_ENG 35

7.5.3.1 Implementation in C#
try
{
 int nDeviceCount = stPad.DeviceGetCount();
 MessageBox.Show(String.Format("{0} devices detected.",
nDeviceCount));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.5.3.2 Implementation in Visual Basic
Try
 Dim nPort As Integer = STPad.DeviceGetCount()
 MsgBox(CStr(nDeviceCount) & " devices detected.")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DeviceGetInfo method
You can use this method to retrieve the serial number and model type of a connected device in order to
uniquely identify it.

BSTR* pbstrSerial

WCHAR
szSerial[16]

out string serial

ByRef serial As
String

max. 16
chars

O Serial number

LONG* pnType

out int type

ByRef type As
Integer

1 O ‘Sigma USB’ model type
2 O ‘Sigma serial’ model type
5 O ‘Zeta USB’ model type
6 O ‘Zeta serial’ model type
11 O ‘Omega USB’ model type
12 O ‘Omega serial’ model type
15 O ‘Gamma USB’ model type
16 O ‘Gamma serial’ model type
21 O ‘Delta USB’ model type
22 O ‘Delta serial’ model type
23 O ‘Delta IP’ model type
31 O ‘Alpha USB’ model type
32 O ‘Alpha serial’ model type
33 O ‘Alpha IP’ model type

other O Reserved for further model types
LONG nIndex

int index

ByVal index As
Integer

>= 0 I Index of the device whose information is to be
queried

Parameter Values I/O Description

Return value Values Description

Guide_SIGAPI_20210108_ENG 36

LONG 0 Method was executed successfully
< 0 Error

7.6.1 STPadCapt.ocx
Available from Version 8.0.1 onwards. The status described is available from Version 8.3.1 onwards.
LONG DeviceGetInfo(BSTR* pbstrSerial, LONG* pnType, LONG nIndex)

7.6.1.1 Implementation in C#
string strSerial = "";
int nType = 0;
int nResult = axSTPadCapt1.DeviceGetInfo(ref strSerial, ref nType,
0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);
else
 MessageBox.Show(String.Format("Type: {0}, Serial: {1}", nType,
strSerial);

7.6.1.2 Implementation in Visual Basic
Dim strSerial As String = ""
Dim nType As Integer = 0
Dim nResult As Integer = AxSTPadCapt1.DeviceGetInfo(strSerial,
nType, 0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
Else
 MsgBox("Type: " & CStr(nType) & ", Serial: " & strSerial)
End If

7.6.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.3.1 onwards.
LONG STDeviceGetInfo(WCHAR szSerial[16], LONG* pnType, LONG nIndex)

7.6.2.1 Implementation in C++
WCHAR szSerial[16];
LONG nType = 0;
LONG nRc = STDeviceGetInfo(szSerial, &nType, 0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
 wprintf(L"Type: %d, Serial: %s", nType, szSerial);

7.6.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.3.1 onwards.
void DeviceGetInfo(out string serial, out int type, int index)

Sub DeviceGetInfo(ByRef serial As String, ByRef type As Integer, ByVal
index As Integer)

Guide_SIGAPI_20210108_ENG 37

7.6.3.1 Implementation in C#
try
{
 string strSerial = "";
 int nType = 0;
 stPad.DeviceGetInfo(out strSerial, out nType, 0);
 MessageBox.Show(String.Format("Type: {0}, Serial: {1}", nType,
strSerial));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.6.3.2 Implementation in Visual Basic
Try
 Dim strSerial As String = ""
 Dim nType As Integer = 0
 STPad.DeviceGetInfo(strSerial, nType, 0)
 MsgBox("Type: " & CStr(nType) & ", Serial: " & strSerial)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DeviceGetVersion method
You can use this method to retrieve the version number of a connected device’s firmware. It is intended
primarily for support purposes.

Parameter Values I/O Description
BSTR*
pbstrVersion

WCHAR
szVersion[16]

max. 16
chars

O Firmware version number (major.minor)

LONG nIndex

int index

ByVal index As
Integer

>= 0 I Index of the device whose information is to be
queried

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error
string

String

max. 16
chars

Firmware version number (major.minor)

7.7.1 STPadCapt.ocx
Available from Version 8.0.3 onwards.
LONG DeviceGetInfo(BSTR* pbstrVersion, LONG nIndex)

Guide_SIGAPI_20210108_ENG 38

7.7.1.1 Implementation in C#
string strVersion = "";
int nResult = axSTPadCapt1.DeviceGetVersion(ref strVersion, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);
else
 MessageBox.Show(String.Format("Firmware: {0}", strVersion);

7.7.1.2 Implementation in Visual Basic
Dim strVersion As String = ""
Dim nResult As Integer = AxSTPadCapt1.DeviceGetVersion(strVersion,
0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
Else
 MsgBox("Firmware: " & strVersion)
End If

7.7.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDeviceGetVersion(WCHAR szVersion[16], LONG nIndex)

7.7.2.1 Implementation in C++
WCHAR szVersion[16];
LONG nRc = STDeviceGetVersion(szVersion, 0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
 wprintf(L"Firmware: %s", szVersion);

7.7.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
string DeviceGetVersion(int index)

Function DeviceGetVersion(ByVal index As Integer) As String

7.7.3.1 Implementation in C#
try
{
 MessageBox.Show(String.Format("Firmware: {0}",
stPad.DeviceGetVersion(0)));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.7.3.2 Implementation in Visual Basic
Try
 MsgBox("Firmware: " & STPad.DeviceGetVersion(0))
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Guide_SIGAPI_20210108_ENG 39

 DeviceGetCapabilities method
You can use this method to retrieve various properties of a connected device.

Parameter Values I/O Description
LONG nIndex

int index

ByVal index As
Integer

>= 0 I Index of the device whose information is to be
queried

Return value Values Description
LONG 0 Bitmask from which the properties can be read (for details

see below)
< 0 Error

PadCapabilities !=
NULL

Class instance from which the properties can be read (for
details see below)

Support of a property is indicated for the STPadCapt.ocx and STPadLib.dll components through a set bit
in the returned bitmask. In the case of the STPadLibNet.dll component, the respective property of the
returned instance will be true if the property is supported. The following properties can be currently
supported:

STPadCapt.ocx
STPadLib.dll

STPadLibNet.dll Description

0x00000001

HasColorDisplay Device has a colour screen

0x00000002

HasBacklight Device has a backlit screen

0x00000004 SupportsVerticalScrollin
g

Device supports vertical scrolling

0x00000008 SupportsHorizontalScroll
ing

Device supports horizontal scrolling

0x00000010 SupportsPenScrolling Device supports scrolling with the pen
0x00000020 SupportsServiceMenu The service menu can be called using the

DeviceStartService() method
0x00000040 SupportsRSA Device supports the RSA functions
0x00000080 SupportsContentSigning Device supports content signing
0x00000100 SupportsH2ContentSigning Device supports content signing where only

hash 2 is signed
0x00000200 CanGenerateSignKey Device can generate a signature key pair
0x00000400 CanStoreSignKey Device can save an externally supplied

signature key pair
0x00000800 CanStoreEncryptKey Device can save an externally supplied

biometric key
0x00001000 CanSignExternalHash Device can sign a hash calculated externally

(otherwise only a hash calculated through
content signing)

0x00002000 SupportsRSAPassword RSA keys can be protected through a device
password.

0x00004000 SupportsSecureModePasswo
rd

The ‘Secure mode’ can be protected through a
device password.

0x00008000 Supports4096BitKeys Device supports RSA keys with a length of up
to 4096 bits (otherwise up to 2048 bits)

0x00010000 HasNFCReader Device has an NFC reader

Guide_SIGAPI_20210108_ENG 40

0x00020000 Keypad Device supports keypad encryption with a
length of up to 8 characters

0x00040000 Keypad32 Device supports keypad encryption with a
length of up to 32 characters

0x00080000 HasDisplay Device has a screen (please note: Support for
this property is always displayed even with a
Sigma Lite up to firmware 2.3)

0x00100000 RSASignPassword The signature key can be protected by a key
password

7.8.1 STPadCapt.ocx
Available from Version 8.4.0 onwards. The status described is available from Version 8.4.2.4.
LONG DeviceGetCapabilities(LONG nIndex)

7.8.1.1 Implementation in C#
int nCapabilities = axSTPadCapt1.DeviceGetCapabilities(0);
if (nCapabilities < 0)
 MessageBox.Show(String.Format("Error {0}", nCapabilities);
else if (nCapabilities & 0x40)
 MessageBox.Show("Device supports RSA");

7.8.1.2 Implementation in Visual Basic
Dim nCapabilities As Integer =
AxSTPadCapt1.DeviceGetCapabilities(0)
If nCapabilities < 0 Then
 MsgBox("Error " & CStr(nCapabilities))
ElseIf nCapabilities And &H40& Then
 MsgBox("Device supports RSA")
End If

7.8.2 STPadLib.dll
Available from Version 8.4.0 onwards. The status described is available from Version 8.4.2.4.
LONG STDeviceGetCapabilities(LONG nIndex)
The following values defined in the header file can be used to evaluate the return value:
#define STPAD_CAP_COLORDISPLAY 0x000001
#define STPAD_CAP_BACKLIGHT 0x000002
#define STPAD_CAP_VERTICALSCROLLING 0x000004
#define STPAD_CAP_HORIZONTALSCROLLING 0x000008
#define STPAD_CAP_PENSCROLLING 0x000010
#define STPAD_CAP_SERVICEMENU 0x000020
#define STPAD_CAP_RSA 0x000040
#define STPAD_CAP_CONTENTSIGNING 0x000080
#define STPAD_CAP_H2CONTENTSIGNING 0x000100
#define STPAD_CAP_GENERATESIGNKEY 0x000200
#define STPAD_CAP_STORESIGNKEY 0x000400
#define STPAD_CAP_STOREENCRYPTKEY 0x000800
#define STPAD_CAP_SIGNEXTERNALHASH 0x001000
#define STPAD_CAP_RSAPASSWORD 0x002000
#define STPAD_CAP_SECUREMODEPASSWORD 0x004000
#define STPAD_CAP_4096BITKEY 0x008000
#define STPAD_CAP_NFCREADER 0x010000
#define STPAD_CAP_KEYPAD 0x020000
#define STPAD_CAP_KEYPAD32 0x040000

Guide_SIGAPI_20210108_ENG 41

#define STPAD_CAP_DISPLAY 0x080000
#define STPAD_CAP_RSASIGNPASSWORD 0x100000

7.8.2.1 Implementation in C++
LONG nCapabilities = STDeviceGetCapabilities(0);
if (nCapabilities < 0)
 wprintf(L"Error %d", nCapabilities);
else if (nCapabilities & 0x40)
 wprintf(L"Device supports RSA");

7.8.3 STPadLibNet.dll
Available from Version 8.4.0 onwards. The status described is available from Version 8.4.2.4.
PadCapabilities DeviceGetCapabilities(int index)

Function DeviceGetCapabilities(ByVal index As Integer) As
PadCapabilities

7.8.3.1 Implementation in C#
try
{
 if (stPad.DeviceGetCapabilities(0).SupportsRSA)
 MessageBox.Show("Device supports RSA");
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.8.3.2 Implementation in Visual Basic
Try
 If STPad.DeviceGetCapabilities(0).SupportsRSA Then
 MsgBox("Device supports RSA")
 End If
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DeviceOpen method
This method opens a connection to a device. The backlight is switched on if this is configured in the
STPad.ini file (see method DisplaySetBacklight()).
Please observe the relevant information in the ‘Using multiple instances’ section.

Guide_SIGAPI_20210108_ENG 42

Parameter Values I/O Description
LONG nIndex

int index

ByVal index As
Integer

>= 0 I Index of the device to which a connection is to be
opened

VARIANT
bEraseDisplay

BOOL
bEraseDisplay

bool eraseDisplay

ByVal
eraseDisplay As
Boolean

true I The device display screen will be erased (Default)
false I The content of the display screen will not change;

the screen content displayed cannot be copied into
another image memory at a later stage; the control
element cannot display the screen content
(Optional)

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.9.1 STPadCapt.ocx
Available from Version 8.0.1 onwards. The status described is available from Version 8.0.25 onwards.
LONG DeviceOpen(LONG nIndex, [optional]VARIANT bEraseDisplay)
Note: The bEraseDisplay parameter is optional and must contain a Boolean value if it is transferred.

7.9.1.1 Implementation in C#
int nResult = axSTPadCapt1.DeviceOpen(0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.9.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.DeviceOpen(0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.9.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.0.25 onwards.
LONG STDeviceOpen(LONG nIndex, BOOL bEraseDisplay=TRUE)

7.9.2.1 Implementation in C++
LONG nRc = STDeviceOpen(0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.9.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.0.25 onwards.
void DeviceOpen(int index)

void DeviceOpen(int index, bool eraseDisplay)

Sub DeviceOpen(ByVal index As Integer)

Sub DeviceOpen(ByVal index As Integer, ByVal eraseDisplay As Boolean)

Guide_SIGAPI_20210108_ENG 43

7.9.3.1 Implementation in C#
try
{
 stPad.DeviceOpen(0);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.9.3.2 Implementation in Visual Basic

Try
 STPad.DeviceOpen(0)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DeviceClose method
This method closes the connection to a device. It can also be opened in another instance, provided it is
running in the same memory area as the instance that is currently being used. Before closing, a currently
running signature capture process is terminated and the backlight switched off, where appropriate, if so
configured in the STPad.ini file (see method DisplaySetBacklight()).
Captured signature data is discarded. When the STPadCapt.ocx component is used, this method is called
automatically as soon as the window containing the control element is closed.

Parameter Values I/O Description
LONG nIndex

int index

ByVal index As
Integer

>= 0 I Index of the device whose connection is to be
closed

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.10.1 STPadCapt.ocx
Available from Version 8.0.1 onwards.
LONG DeviceOpen(LONG nIndex)

7.10.1.1 Implementation in C#
int nResult = axSTPadCapt1.DeviceClose(0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.10.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.DeviceClose(0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.10.2 STPadLib.dll
Available from Version 8.0.19 onwards.

Guide_SIGAPI_20210108_ENG 44

LONG STDeviceClose(LONG nIndex)

7.10.2.1 Implementation in C++
LONG nRc = STDeviceClose(0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.10.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void DeviceClose(int index)

Sub DeviceClose(ByVal index As Integer)

7.10.3.1 Implementation in C#
try
{
 stPad.DeviceClose(0);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.10.3.2 Implementation in Visual Basic
Try
 STPad.DeviceClose(0)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DeviceSetLed method
This method sets the colour of the LED on the front of the pad. The DeviceLedDefaultFlag
property should be set to FALSE when this method is used, in order to ensure that the colour is not
changed when SignatureStart(), SignatureCancel() and SignatureConfirm() are
called. The LED always lights up yellow as soon as the device has been detected by the PC operating
system and is ready for use.

Parameter Values I/O Description
LONG nLedColor

LedColorFlag
ledColor

ByVal ledColor As
LedColorFlag

Bitmask containing one or more hexadecimal values from the
following list:
0x01 I Yellow
0x02 I Green

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.11.1 STPadCapt.ocx
Available from Version 8.0.1 onwards.
LONG DeviceSetLed(LONG nLedColor)

Guide_SIGAPI_20210108_ENG 45

7.11.1.1 Implementation in C#
int nResult = axSTPadCapt1.DeviceSetLed(1);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.11.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.DeviceSetLed(1)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.11.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDeviceSetLed(LONG nLedColor)
The following values defined in the header file can be used for the nLedColor parameter:
#define STPAD_LED_YELLOW 0x01
#define STPAD_LED_GREEN 0x02

7.11.2.1 Implementation in C++
LONG nRc = STDeviceSetLed(STPAD_LED_YELLOW);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.11.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void DeviceSetLed(signotec.STPadLibNet.LedColorFlag ledColor)

Sub DeviceSetLed(ByVal ledColor As signotec.STPadLibNet.LedColorFlag)
The LedColorFlag enumeration is defined as follows:
Off = 0,
Yellow = 0x01,
Green = 0x02

7.11.3.1 Implementation in C#
try
{
 stPad.DeviceSetLed(LedColorFlag.Yellow);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.11.3.2 Implementation in Visual Basic
Try
 STPad.DeviceSetLed(LedColorFlag.Yellow)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DeviceGetNFCMode method
This method reads out the operating mode of the optionally installed NFC reader. Whether the
connected device has an NFC reader can be queried using the DeviceGetCapabilities() method.

Guide_SIGAPI_20210108_ENG 46

Parameter Values I/O Description
LONG nIndex

int index

ByVal index As
Integer

>= 0 I Index of the device whose information is to be
queried

Return value Values Description
LONG 0–1 Operating mode (see also DeviceSetNFCMode())

< 0 Error
NFCMode Off

On
Operating mode (see also DeviceSetNFCMode())

7.12.1 STPadCapt.ocx
Available from Version 8.4.0 onwards. The status described is available from Version 8.4.1010.
LONG DeviceGetNFCMode(LONG nIndex)

7.12.1.1 Implementation in C#
int nMode = axSTPadCapt1.DeviceGetNFCMode(0);
switch (nMode)
{
 case 0:
 MessageBox.Show("The NFC reader is currently switched
off.");
 break;
 case 1:
 MessageBox.Show("The NFC reader is currently switched
on.");
 break;
 default:
 MessageBox.Show(String.Format("Error {0}", nMode);
 break;
}

7.12.1.2 Implementation in Visual Basic
Dim nMode As Integer = AxSTPadCapt1.DeviceGetNFCMode(0)
Select Case nMode
 Case 0
 MsgBox("The NFC reader is currently switched off.")
 Case 1
 MsgBox("The NFC reader is currently switched on.")
 Case Else
 MsgBox("Error " & CStr(nMode))
End Select

7.12.2 STPadLib.dll
Available from Version 8.4.0 onwards. The status described is available from Version 8.4.1010.
LONG STDeviceGetNFCMode(LONG nIndex)
The following values defined in the header file can be used for the nMode parameter:
#define STPAD_NFC_OFF 0
#define STPAD_NFC_ON 1

Guide_SIGAPI_20210108_ENG 47

7.12.2.1 Implementation in C++
LONG nMode = STDeviceGetNFCMode(0);
switch (nMode)
{
 case STPAD_NFC_OFF:
 wprintf(L"The NFC reader is currently switched off.");
 break;
 case STPAD_NFC_ON:
 wprintf(L"The NFC reader is currently switched on.");
 break;
 default:
 wprintf(L"Error %d", nMode);
 break;
}

7.12.3 STPadLibNet.dll
Available from Version 8.4.0 onwards. The status described is available from Version 8.4.1010.
NFCMode DeviceGetNFCMode(int index)

Function DeviceGetNFCMode(ByVal index As Integer) As
signotec.STPadLibNet.NFCMode
The NFCMode enumeration is defined as follows:
Off = 0,
On = 1

7.12.3.1 Implementation in C#
try
{
 switch (stPad.DeviceGetNFCMode(0))
 {
 case NFCMode.Off:
 MessageBox.Show("The NFC reader is currently switched
off.");
 break;
 case NFCMode.On:
 MessageBox.Show("The NFC reader is currently switched
on.");
 break;
 }
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Guide_SIGAPI_20210108_ENG 48

7.12.3.2 Implementation in Visual Basic
Try
 Select Case STPad.DeviceGetNFCMode(0)
 Case NFCMode.Off
 MsgBox("The NFC reader is currently switched off.")
 Case NFCMode.On
 MsgBox("The NFC reader is currently switched on.")
 End Select
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DeviceSetNFCMode method
This method changes the operating mode of the optionally installed NFC reader. It can only be called if a
connection to the device has not been opened in another application. Whether the connected device
has an NFC reader can be queried using the DeviceGetCapabilities() method.

Parameter Values I/O Description
LONG nMode

NFCMode mode

ByVal mode As
NFCMode

0 I The NFC reader is turned off; after a restart, it is in
standard operating mode again.

1 I The NFC reader is turned on; after a restart, it is in
standard operating mode again.

2 I The NFC reader is turned off; the standard operating
mode is likewise set to ‘off’.

3 I The NFC reader is turned on; the standard operating
mode is likewise set to ‘on’.

LONG nIndex

int index

ByVal index As
Integer

>= 0 I Index of the device whose mode is to be changed.

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.13.1 STPadCapt.ocx
Available from Version 8.4.0 onwards. The status described is available from Version 8.4.1010.
LONG DeviceSetNFCMode(LONG nMode, LONG nIndex)

7.13.1.1 Implementation in C#
int nResult = axSTPadCapt1.DeviceSetNFCMode(1, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.13.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.DeviceSetNFCMode(1, 0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.13.2 STPadLib.dll
Available from Version 8.4.0 onwards. The status described is available from Version 8.4.1010.
LONG STDeviceSetNFCMode(LONG nMode, LONG nIndex)

Guide_SIGAPI_20210108_ENG 49

The following values defined in the header file can be used for the nMode parameter:
#define STPAD_NFC_OFF 0
#define STPAD_NFC_ON 1
#define STPAD_NFC_PERMANENTLYOFF 2
#define STPAD_NFC_PERMANENTLYON 3

7.13.2.1 Implementation in C++
LONG nRc = STDeviceSetNFCMode(STPAD_NFC_ON, 0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.13.3 STPadLibNet.dll
Available from Version 8.4.0 onwards. The status described is available from Version 8.4.1010.
void DeviceSetNFCMode(signotec.STPadLibNet.NFCMode mode, int index)

Sub DeviceSetNFCMode(ByVal mode As signotec.STPadLibNet.NFCMode, ByVal
index As Integer)
The NFCMode enumeration is defined as follows:
Off = 0,
On = 1,
PermanentlyOff = 2,
PermanentlyOn = 3

7.13.3.1 Implementation in C#
try
{
 stPad.DeviceSetNFCMode(NFCMode.On, 0);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.13.3.2 Implementation in Visual Basic
Try
 STPad.DeviceSetNFCMode(NFCMode.On, 0)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DeviceStartService method
This method starts one of the configuration dialog boxes on the signature device. The device cannot be
reached as long as the dialog is displayed. The device restarts if the type of connection or the IP
configuration is adjusted in the configuration dialog box.

Guide_SIGAPI_20210108_ENG 50

Parameter Values I/O Description
LONG nType

int type

ByVal type As
Integer

0 I Starts the service menu in which the type of
connection, the IP configuration and the screen
brightness can be changed; this is only supported by
the Sigma model from firmware 2.10, the Zeta
model, the Omega model from firmware 2.0, the
Gamma model from firmware 1.6, the Delta model
and the Alpha model, provided that the device has a
backlit screen

1 I Starts screen calibration
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.14.1 STPadCapt.ocx
Available from Version 8.1.2 onwards. The status described is available from Version 8.4.0 onwards.
LONG DeviceStartService(LONG nType)

7.14.1.1 Implementation in C#
int nResult = axSTPadCapt1.DeviceStartService(1);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.14.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.DeviceStartService(1)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.14.2 STPadLib.dll
Available from Version 8.1.2 onwards. The status described is available from Version 8.4.0 onwards.
LONG STDeviceStartService(LONG nType)

7.14.2.1 Implementation in C++
LONG nRc = STDeviceStartService(1);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.14.3 STPadLibNet.dll
Available from Version 8.1.2 onwards. The status described is available from Version 8.4.0 onwards.
void DeviceStartService(int type)

Sub DeviceStartService(ByVal type As Integer)

7.14.3.1 Implementation in C#
try
{
 stPad.DeviceStartService(1);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Guide_SIGAPI_20210108_ENG 51

7.14.3.2 Implementation in Visual Basic
Try
 STPad.DeviceStartService(1)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SensorGetSampleRateMode method
This method returns the configured sample rate with which the signature is captured.

Parameter Values I/O Description
- - - -
Return value Values Description
LONG

SampleRate

3 280 Hz
2 500 Hz
1 250 Hz
0 125 Hz
< 0 Error (not STPadLibNet.dll)

7.15.1 STPadCapt.ocx
Available from Version 8.0.1 onwards. The status described is available from Version 8.1.1 onwards.
LONG SensorGetSampleRateMode()

7.15.1.1 Implementation in C#
int nMode = axSTPadCapt1.SensorGetSampleRateMode();
switch (nMode)
{
 case 0:
 MessageBox.Show("Sample rate is 125 Hz.");
 break;
 case 1:
 MessageBox.Show("Sample rate is 250 Hz.");
 break;
 case 2:
 MessageBox.Show("Sample rate is 500 Hz.");
 break;
 case 3:
 MessageBox.Show("Sample rate is 280 Hz.");
 break;
 default:
 MessageBox.Show(String.Format("Error {0}", nMode);
 break;
}

Guide_SIGAPI_20210108_ENG 52

7.15.1.2 Implementation in Visual Basic
Dim nMode As Integer = AxSTPadCapt1.SensorGetSampleRateMode
Select Case nMode
 Case 0
 MsgBox("Sample rate is 125 Hz.")
 Case 1
 MsgBox("Sample rate is 250 Hz.")
 Case 2
 MsgBox("Sample rate is 500 Hz.")
 Case 3
 MsgBox("Sample rate is 280 Hz.")
 Case Else
 MsgBox("Error " & CStr(nMode))
End Select

7.15.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.1.1 onwards.
LONG STSensorGetSampleRateMode()

7.15.2.1 Implementation in C++
LONG nMode = STSensorGetSampleRateMode();
switch (nMode)
{
 case 0:
 wprintf(L"Sample rate is 125 Hz.");
 break;
 case 1:
 wprintf(L"Sample rate is 250 Hz.");
 break;
 case 2:
 wprintf(L"Sample rate is 500 Hz.");
 break;
 case 3:
 wprintf(L"Sample rate is 280 Hz.");
 break;
 default:
 wprintf(L"Error %d", nMode);
 break;
}

7.15.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.1.1 onwards.
signotec.STPadLibNet.SampleRate SensorGetSampleRateMode()

Function SensorGetSampleRateMode() As signotec.STPadLibNet.SampleRate
The SampleRate enumeration is defined as follows:
Hz125 = 0,
Hz250 = 1,
Hz500 = 2,
Hz280 = 3

Guide_SIGAPI_20210108_ENG 53

7.15.3.1 Implementation in C#
try
{
 switch (stPad.SensorGetSampleRateMode())
 {
 case SampleRate.Hz125:
 MessageBox.Show("Sample rate is 125 Hz.");
 break;
 case SampleRate.Hz250:
 MessageBox.Show("Sample rate is 250 Hz.");
 break;
 case SampleRate.Hz500:
 MessageBox.Show("Sample rate is 500 Hz.");
 break;
 case SampleRate.Hz280:
 MessageBox.Show("Sample rate is 280 Hz.");
 break;
 }
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.15.3.2 Implementation in Visual Basic
Try
 Select Case STPad.SensorGetSampleRateMode()
 Case SampleRate.Hz125
 MsgBox("Sample rate is 125 Hz.")
 Case SampleRate.Hz250
 MsgBox("Sample rate is 250 Hz.")
 Case SampleRate.Hz500
 MsgBox("Sample rate is 500 Hz.")
 Case SampleRate.Hz280
 MsgBox("Sample rate is 280 Hz.")
 End Select
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SensorSetSampleRateMode method
This method sets the sample rate with which the signature is captured. The default setting is mode 1
(250 Hz) or mode 3 (280 Hz) when using the Alpha model. This mode provides high-quality signature
data while at the same time ensures that the data record is of moderate size. When using the Sigma,
Zeta, Gamma and Omega models, this value can easily be set to 2 (500 Hz) for high-speed data lines.

Guide_SIGAPI_20210108_ENG 54

Parameter Values I/O Description
LONG nMode

SampleRate mode

ByVal mode As
SampleRate

0 I 125 Hz (Sigma, Zeta, Omega, Gamma and Delta
only)

1 I 250 Hz (Sigma, Zeta, Omega, Gamma and Delta
only)

2 I 500 Hz (Sigma, Zeta, Omega, Gamma and Delta
only)

3 I 280 Hz (Alpha only)
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.16.1 STPadCapt.ocx
Available from Version 8.0.1 onwards. The status described is available from Version 8.1.1 onwards.
LONG SensorSetSampleRateMode(LONG nMode)

7.16.1.1 Implementation in C#
int nResult = axSTPadCapt1.SensorSetSampleRateMode(1);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.16.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SensorSetSampleRateMode(1)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.16.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.1.1 onwards.
LONG STSensorSetSampleRateMode(LONG nMode)

7.16.2.1 Implementation in C++
LONG nRc = STSensorSetSampleRateMode(1);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.16.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.1.1 onwards.
void SensorSetSampleRateMode(signotec.STPadLibNet.SampleRate mode)

Sub SensorSetSampleRateMode(ByVal mode As
signotec.STPadLibNet.SampleRate)
The SampleRate enumeration is defined as follows:
Hz125 = 0,
Hz250 = 1,
Hz500 = 2,
Hz280 = 3

Guide_SIGAPI_20210108_ENG 55

7.16.3.1 Implementation in C#
try
{
 stPad.SensorSetSampleRateMode(SampleRate.Hz250);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.16.3.2 Implementation in Visual Basic
Try
 STPad.SensorSetSampleRateMode(SampleRate.Hz250)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SensorSetSignRect method
This method defines the rectangle in which the signature is captured. If the rectangle overlaps with one
of the fixed hotspots (see SensorAddHotSpot()), an error is returned.

Parameter Values I/O Description
LONG nLeft

int left

ByVal left As
Integer

>= 0 I Left boundary; 0 is on the far left of the display

LONG nTop

int top

ByVal top As
Integer

>= 0 I Upper boundary; 0 is at the top of the display

LONG nWidth

int width

ByVal width As
Integer

> 3 I Width; DisplayWidth holds the width of the LCD
used

0 I Right boundary is automatically set to the maximum
value (right margin of the LCD)

LONG nHeight

int height

ByVal height As
Integer

> 3 I Height; DisplayHeight holds the height of the
LCD used

0 I Lower boundary is automatically set to the
maximum value (lower margin of the LCD)

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.17.1 STPadCapt.ocx
Available from Version 8.0.1 onwards. The status described is available from Version 8.4.1.5.
LONG SensorSetSignRect(LONG nLeft, LONG nTop, LONG nWidth, LONG nHeight)

7.17.1.1 Implementation in C#
int nResult = axSTPadCapt1.SensorSetSignRect(0, 40, 0, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

Guide_SIGAPI_20210108_ENG 56

7.17.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SensorSetSignRect(0, 40, 0,
0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.17.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.5.
LONG STSensorSetSignRect(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight)

7.17.2.1 Implementation in C++
LONG nRc = STSensorSetSignRect(0, 40, 0, 0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.17.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.5.
void SensorSetSignRect(int left, int top, int width, int height)

Sub SensorSetSignRect(ByVal left As Integer, ByVal top As Integer, ByVal
width As Integer, ByVal height As Integer)

7.17.3.1 Implementation in C#
try
{
 stPad.SensorSetSignRect(0, 40, 0, 0);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.17.3.2 Implementation in Visual Basic
Try
 STPad.SensorSetSignRect(0, 40, 0, 0)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SensorClearSignRect method
This method erases the signature window.

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.18.1 STPadCapt.ocx
Available from Version 8.0.1 onwards.
LONG SensorClearSignRect()

Guide_SIGAPI_20210108_ENG 57

7.18.1.1 Implementation in C#
int nResult = axSTPadCapt1.SensorClearSignRect();
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.18.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SensorClearSignRect
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.18.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STSensorClearSignRect()

7.18.2.1 Implementation in C++
LONG nRc = STSensorClearSignRect();
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.18.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void SensorClearSignRect()

Sub SensorClearSignRect()

7.18.3.1 Implementation in C#
try
{
 stPad.SensorClearSignRect();
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.18.3.2 Implementation in Visual Basic
Try
 STPad.SensorClearSignRect()
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SensorSetScrollArea method
This method defines a rectangular subarea of the non-volatile memory whose content can be scrolled.
The subarea must be at least as big as the display and fully encompass the displayed area. Once a
connection has been opened, the entire memory is set as the scroll area.

Guide_SIGAPI_20210108_ENG 58

Parameter Values I/O Description
LONG nLeft

int left

ByVal left As
Integer

>= 0 I Left boundary; 0 is on the far left of the memory

LONG nTop

int top

ByVal top As
Integer

>= 0 I Upper boundary; 0 is at the top of the memory

LONG nWidth

int width

ByVal width As
Integer

> 0 I Width, must be >= DisplayWidth;
DisplayTargetWidth contains the width of the
currently set memory

0 I Right boundary is automatically set to the maximum
value (right margin of the memory)

LONG nHeight

int height

ByVal height As
Integer

> 0 I Height must be >= DisplayHeight;
DisplayTargetHeight contains the height of
the currently set memory

0 I Lower boundary is automatically set to the
maximum value (lower margin of the memory)

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.19.1 STPadCapt.ocx
Available from Version 8.3.1 onwards.
LONG SensorSetScrollArea(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight)

7.19.1.1 Implementation in C#
int nResult = axSTPadCapt1.SensorSetScrollArea(0, 0, 0, 960);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.19.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SensorSetScrollArea(0, 0, 0,
960)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.19.2 STPadLib.dll
Available from Version 8.3.1 onwards.
LONG STSensorSetScrollArea(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight)

7.19.2.1 Implementation in C++
LONG nRc = STSensorSetScrollArea(0, 0, 0, 960);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

Guide_SIGAPI_20210108_ENG 59

7.19.3 STPadLibNet.dll
Available from Version 8.3.1 onwards.
void SensorSetScrollArea(int left, int top, int width, int height)

Sub SensorSetScrollArea(ByVal left As Integer, ByVal top As Integer,
ByVal width As Integer, ByVal height As Integer)

7.19.3.1 Implementation in C#
try
{
 stPad.SensorSetScrollArea(0, 0, 0, 960);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.19.3.2 Implementation in Visual Basic
Try
 STPad.SensorSetScrollArea(0, 0, 0, 960)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SensorSetPenScrollingEnabled method
This method activates scrolling with the pen. In this mode, the memory contents can be offset by
moving the pen on the display within the area set via SensorSetScrollArea. The application is informed
about this via the DisplayScrollPosChanged() event.
This method only works with the Delta model.

Parameter Values I/O Description
VARIANT_BOOL
bEnable

BOOL bEnable

bool enable

ByVal enable As
Boolean

true I Scrolling with the pen is activated; signature capture
must not have been started.

false I Deactivates scrolling with the pen

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.20.1 STPadCapt.ocx
Available from Version 8.3.1 onwards. The status described is available from Version 8.4.1.5.
LONG SensorSetPenScrollingEnabled(VARIANT_BOOL bEnable)

7.20.1.1 Implementation in C#
int nResult = axSTPadCapt1.SensorSetPenScrollingEnabled(true);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.20.1.2 Implementation in Visual Basic
Dim nResult As Integer =
AxSTPadCapt1.SensorSetPenScrollingEnabled(True)

Guide_SIGAPI_20210108_ENG 60

If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.20.2 STPadLib.dll
Available from Version 8.3.1 onwards. The status described is available from Version 8.4.1.5.
LONG STSensorSetPenScrollingEnabled(BOOL bEnable)

7.20.2.1 Implementation in C++
LONG nRc = STSensorSetPenScrollingEnabled(TRUE);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.20.3 STPadLibNet.dll
Available from Version 8.3.1 onwards. The status described is available from Version 8.4.1.5.
void SensorSetPenScrollingEnabled(bool enable)

Sub SensorSetPenScrollingEnabled(ByVal enable As Boolean)

7.20.3.1 Implementation in C#
try
{
 stPad.SensorSetPenScrollingEnabled(true);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.20.3.2 Implementation in Visual Basic
Try
 STPad.SensorSetPenScrollingEnabled(True)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SensorAddHotSpot method
This method defines a rectangular subarea of the sensor surface that responds to user clicks. See also
SensorHotSpotPressed(). If a scroll hotspot has already been defined, scrolling has been
performed or pen-controlled scrolling (see also SensorSetPenScrollingEnabled()) is active, the
rectangle must be in the area defined via DisplaySetOverlayRect(). It should not overlap with
the defined signature window (see SensorSetSignRect()) or a hotspot that was previously set.

Guide_SIGAPI_20210108_ENG 61

Parameter Values I/O Description
LONG nLeft

int left

ByVal left As
Integer

>= 0 I Left boundary; 0 is on the far left of the display

LONG nTop

int top

ByVal top As
Integer

>= 0 I Upper boundary; 0 is at the top of the display

LONG nWidth

int width

ByVal width As
Integer

> 0 I Width; DisplayWidth holds the width of the LCD
used

0 I Right boundary is automatically set to the maximum
value (right margin of the LCD)

LONG nHeight

int height

ByVal height As
Integer

> 0 I Height; DisplayHeight holds the height of the
LCD used

0 I Lower boundary is automatically set to the
maximum value (lower margin of the LCD)

Return value Values Description
LONG >= 0 ID of the hotspot that was generated

< 0 Error (not STPadLibNet.dll)

7.21.1 STPadCapt.ocx
Available from Version 8.0.1 onwards. The status described is available from Version 8.3.1 onwards.
LONG SensorAddHotSpot(LONG nLeft, LONG nTop, LONG nWidth, LONG nHeight)

7.21.1.1 Implementation in C#
int nHotspotId = axSTPadCapt1.SensorAddHotSpot(0, 0, 0, 40);
if (nHotspotId < 0)
 MessageBox.Show(String.Format("Error {0}", nHotspotId);

7.21.1.2 Implementation in Visual Basic
Dim nHotpotId As Integer = AxSTPadCapt1.SensorAddHotSpot(0, 0, 0,
40)
If nHotspotId < 0 Then
 MsgBox("Error " & CStr(nHotspotId))
End If

7.21.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STSensorAddHotSpot(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight)

7.21.2.1 Implementation in C++
LONG nRc = STSensorAddHotSpot(0, 0, 0, 40);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.21.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.

Guide_SIGAPI_20210108_ENG 62

void SensorAddHotSpot(int left, int top, int width, int height)

Sub SensorAddHotSpot(ByVal left As Integer, ByVal top As Integer, ByVal
width As Integer, ByVal height As Integer)

7.21.3.1 Implementation in C#
try
{
 STPad.SensorAddHotSpot(0, 0, 0, 40);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.21.3.2 Implementation in Visual Basic
Try
 STPad.SensorAddHotSpot(0, 0, 0, 40)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SensorAddScrollHotSpot method
This method defines a rectangular subarea of the sensor surface that responds to user clicks. Depending
on the option that is used, the subarea is either created as a scroll hotspot or as a scrollable hotspot.
If a scroll hotspot is activated by the user, the screen content is scrolled to the left, to the right, up or
down at the speed defined by the DisplayScrollSpeed property and the
DisplayScrollPosChanged() event is called. A scroll hotspot only responds to clicks if it lies in
the area defined by DisplaySetOverlayRect(); otherwise it is inactive.
The rectangle should not overlap with the defined signature window (see SensorSetSignRect())
or a fixed hotspot that was previously set.
A scrollable hotspot behaves like a normal hotspot (also see SensorAddHotSpot()), however, it is
moved with the displayed content during scrolling. A scrollable hotspot does not respond to clicks if it
lies in the area defined by DisplaySetOverlayRect().
The rectangle should not overlap with a scrollable hotspot that was previously set. The rectangle should
not overlap with the defined signature window (see SensorSetSignRect()) while a signature
capture process is currently running.
This method only works with the Omega, Gamma and Delta models as well as with Alpha models with
firmware 1.8 or a newer version.

Guide_SIGAPI_20210108_ENG 63

Parameter Values I/O Description
LONG nLeft

int left

ByVal left As
Integer

>= 0 I Left boundary; 0 is on the far left of the display

LONG nTop

int top

ByVal top As
Integer

>= 0 I Upper boundary; 0 is at the top of the display

LONG nWidth

int width

ByVal width As
Integer

> 0 I Width; DisplayWidth holds the width of the LCD
used

0 I Right boundary is automatically set to the maximum
value (right margin of the LCD)

LONG nHeight

int height

ByVal height As
Integer

> 0 I Height; DisplayHeight holds the height of the
LCD used

0 I Lower boundary is automatically set to the
maximum value (lower margin of the LCD)

LONG nType

HOTSPOTTYPE nType

ScrollOption type

ByVal type As
ScrollOption

0 I Scroll hotspot: Pressing the hotspot moves the
screen content up (scrolls down)

1 I Scroll hotspot: Pressing the hotspot moves the
screen content down (scrolls up)

2 I Scroll hotspot: Pressing the hotspot moves the
screen content to the left (scrolls right); only
available with the Alpha model

3 I Scroll hotspot: Pressing the hotspot moves the
screen content to the right (scrolls left); only
available with the Alpha model

4 I Scrollable hotspot; only available with the Delta
model

Return value Values Description
LONG >= 0 ID of the hotspot that was generated

< 0 Error (not STPadLibNet.dll)

7.22.1 STPadCapt.ocx
Available from Version 8.0.17 onwards. The status described is available from Version 8.4.1.5.
LONG SensorAddScrollHotSpot(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight, LONG nTYPE)

7.22.1.1 Implementation in C#
int nHotspotId = axSTPadCapt1.SensorAddScrollHotSpot(0, 0, 0, 40,
0);
if (nHotspotId < 0)
 MessageBox.Show(String.Format("Error {0}", nHotspotId);

7.22.1.2 Implementation in Visual Basic
Dim nHotpotId As Integer
nHotpotId = AxSTPadCapt1.SensorAddScrollHotSpot(0, 0, 0, 40, 0)
If nHotspotId < 0 Then
 MsgBox("Error " & CStr(nHotspotId))

Guide_SIGAPI_20210108_ENG 64

End If

7.22.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.5.
LONG STSensorAddScrollHotSpot(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight, HOTSPOTTYPE nType)

The HOTSPOTTYPE enumeration is defined as follows:
kScrollDown = 0,
kScrollUp = 1,
kScrollRight = 2,
kScrollLeft = 3,
kScrollable = 4

7.22.2.1 Implementation in C++
LONG nRc = STSensorAddScrollHotSpot(0, 0, 0, 40, kScrollDown);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.22.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.5.
void SensorAddScrollHotSpot(int left, int top, int width, int height,
signotec.STPadLibNet.ScrollOption type)

Sub SensorAddScrollHotSpot(ByVal left As Integer, ByVal top As Integer,
ByVal width As Integer, ByVal height As Integer,
signotec.STPadLibNet.ScrollOption type)
The ScrollOption enumeration is defined as follows:
ScrollDown = 0,
ScrollUp = 1,
ScrollRight = 2,
ScrollLeft = 3,
Scrollable = 4

7.22.3.1 Implementation in C#
try
{
 stPad.SensorAddScrollHotSpot(0, 0, 0, 40,
ScrollOption.ScrollDown);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.22.3.2 Implementation in Visual Basic
Try
 STPad.SensorAddScrollHotSpot(0, 0, 0, 40,
ScrollOption.ScrollDown)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Guide_SIGAPI_20210108_ENG 65

 SensorAddKeypadHotSpot method
This method defines a rectangular subarea of the sensor surface that responds to user clicks. This
hotspot type is subject to a special security aspect: Although the SensorHotSpotPressed() event
is triggered when clicked, the ID of the clicked hotspot is not transmitted but is instead kept in a list in
the signature device. This list can be read in encrypted form using the
SensorGetKeypadEntries() method or deleted using the SensorClearKeypadEntries()
method. This hotspot type is therefore suitable for sensitive input such as PINs.
Depending on the device properties, the list in the device may hold up to eight or 32 entries before an
overflow occurs; hotspots can still be clicked when a list is filled, however, the information will be lost.
The application must therefore read out the list in good time if more than eight or 32 characters need to
be entered. See also DeviceGetCapabilities().
If a scroll hotspot has already been defined, scrolling has been performed or pen-controlled scrolling
(see also SensorSetPenScrollingEnabled()) is active, the rectangle must be in the area defined
via DisplaySetOverlayRect(). It should not overlap with the defined signature window (see
SensorSetSignRect()) or a hotspot that was previously set.
Please note that adding a keypad hotspot empties the list in the device. Therefore, if necessary, make
sure to read out the list first using the SensorGetKeypadEntries() method.
This method works with the Sigma model from firmware 2.10, the Zeta model from firmware 1.0, the
Omega model from firmware 2.14, the Gamma model from firmware 1.20 and the Delta model from
firmware 1.22. For the Sigma model up to firmware 2.14, the Omega model up to firmware 2.18, the
Gamma model up to firmware 1.33 and the Delta model up to firmware 1.35, the restriction applies that
these methods only work if the memory defined with the DisplaySetTarget() method is the
foreground memory.

Parameter Values I/O Description
LONG nLeft

int left

ByVal left As
Integer

>= 0 I Left boundary; 0 is on the far left of the display

LONG nTop

int top

ByVal top As
Integer

>= 0 I Upper boundary; 0 is at the top of the display

LONG nWidth

int width

ByVal width As
Integer

> 0 I Width; DisplayWidth holds the width of the LCD
used

0 I Right boundary is automatically set to the maximum
value (right margin of the LCD)

LONG nHeight

int height

ByVal height As
Integer

> 0 I Height; DisplayHeight holds the height of the
LCD used

0 I Lower boundary is automatically set to the
maximum value (lower margin of the LCD)

WCHAR* szChars

LPCWSTR szChars

ByVal chars As
SecureString

!=
NULL

I Character string that is stored for the hotspot and
returned when SensorGetKeypadEntries() is
called

Return value Values Description
LONG >= 0 ID of the hotspot that was generated

< 0 Error (not STPadLibNet.dll)

Guide_SIGAPI_20210108_ENG 66

7.23.1 STPadCapt.ocx
Available from Version 8.4.3 onwards.
SensorAddKeypadHotSpot(long nLeft, long nTop, long nWidth, long nHeight,
WCHAR* szChars)

7.23.1.1 Implementation in C#
int nRc = axSTPadCapt1.SensorAddKeypadHotSpot(0, 0, 0, 40, "1");
if (nRc < 0)
 MessageBox.Show(String.Format("Error {0}", nRc);

7.23.1.2 Implementation in Visual Basic
Dim nResult As Integer
nRc = AxSTPadCapt1.SensorAddKeypadHotSpot(0, 0, 0, 40, "1")
If nHotspotId < 0 Then
 MsgBox("Error " & CStr(nRc))
End If

7.23.2 STPadLib.dll
Available from Version 8.4.3 onwards.
LONG STSensorAddKeypadHotSpot(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight, LPCWSTR szChars)

7.23.2.1 Implementation in C++
LONG nRc = STSensorAddKeypadHotSpot(0, 0, 0, 40, "1");
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.23.3 STPadLibNet.dll
Available from Version 8.4.3 onwards.
long SensorAddKeypadHotSpot(long left, long top, long width, long
height, System.Security.SecureString chars)

Sub SensorAddKeypadHotSpot(ByVal left As Integer, ByVal top As Integer,
ByVal width As Integer, ByVal height As Integer, ByVal chars As
System.Security.SecureString)

7.23.3.1 Implementation in C#
SecureString keypadName = new SecureString();
keypadName.AppendChar('1');
try
{
 stPad.SensorAddKeypadHotSpot(0, 0, 0, 40, keypadName);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Guide_SIGAPI_20210108_ENG 67

7.23.3.2 Implementation in Visual Basic
Dim keypadName As SecureString = New SecureString()
keypadName.AppendChar('1')
Try
 STPad.SensorAddKeypadHotSpot(0, 0, 0, 40, keypadName)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SensorGetKeypadEntries method
With this method, any number of keypad entries signalled by the SensorHotSpotPressed() event
can be read out of the signature device in encrypted form and retrieved as contiguous text consisting of
the characters stored when calling SensorAddKeyPadHotSpot(). The entries that are read out are
deleted from the signature device.
This method works with the Sigma model from firmware 2.10, the Zeta model from firmware 1.0, the
Omega model from firmware 2.14, the Gamma model from firmware 1.20 and the Delta model from
firmware 1.22.

Parameter Values I/O Description
BSTR*
pbstrEntries

out SecureString
entry

ByRef entry As
String

!=
NULL

O Character string containing the characters of the
clicked keypad hotspots; the oldest entries are
processed first

LPCWSTR szEntries NULL I The method returns the length of the character
string in the pnStringLength parameter

!=
NULL

I/O Array in which the character string is to be written

LONG*
pnStringLength

>= 0 I/O Length of the character string incl. terminated 0 or
size of the szEntries array in bytes

LONG nMaxEntries

LONG maxEntries

ByVal maxEntries
As Long

0 I All existing list elements are read out
1 -
32

I Maximum number of list elements to be read from
the signature device

Return value Values Description
LONG

int

Integer

>= 0 Number of list items that have been read out
< 0 Error (not STPadLibNet.dll)

7.24.1 STPadCapt.ocx
Available from Version 8.4.3 onwards.
LONG SensorGetKeypadEntries(BSTR* pbstrEntries, LONG nMaxEntries)

Guide_SIGAPI_20210108_ENG 68

7.24.1.1 Implementation in C#
string keypadEntries = String.Empty;
int nResult = axSTPadCapt1.SensorGetKeypadEntries(ref
keypadEntries, 1);
if (nResult == 0)
 MessageBox.Show("No button has been pressed since last
call"));
else if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult));

7.24.1.2 Implementation in Visual Basic
Dim keypadEntries As String = String.Empty
Dim nResult As Integer
nResult = AxSTPadCapt1.SensorGetKeypadEntries(keypadEntries, 1)
ElseIf nResult = 0 Then
 MsgBox("No button has been pressed since last call")
ElseIf nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.24.2 STPadLib.dll
Available from Version 8.4.3 onwards.
LONG STSensorGetKeypadEntries(LPCWSTR szEntries, LONG* pnStringLength,
LONG nMaxEntries)

7.24.2.1 Implementation in C++
LONG nLen = 0;
LONG nRc = STSensorGetKeypadEntries(NULL, &nLen, 1);
if (nRc == 0)
 wprintf(L"No button has been pressed since last call");
else if (nRc > 0)
{
 WCHAR* szKeypadEntries = new WCHAR[nLen / sizeof(WCHAR)];
 nRc = STSensorGetKeypadEntries(szKeypadEntries, &nLen, 1);
 if (nRc > 0)
 // process entries...
 delete [] szKeypadEntries;
}
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.24.3 STPadLibNet.dll
Available from Version 8.4.3 onwards.
long SensorGetKeypadEntries(out System.Security.SecureString entry, long
maxEntries)

Function SensorGetKeypadEntries(ByRef entry As
System.Security.SecureString, ByVal maxEntries As Long) As Integer

Guide_SIGAPI_20210108_ENG 69

7.24.3.1 Implementation in C#
try
{
 SecureString keypadEntries;
 int count = stPad.SensorGetKeypadEntries(out keypadEntries,
1);
 if (count == 0)
 MessageBox.Show("No button has been pressed since last
call");
 else
 // process entries...
 keypadEntries.Dispose();
{
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.24.3.2 Implementation in Visual Basic
Try
 Dim keypadNames As SecureString
 Dim count As Integer =
STPad.SensorGetKeypadEntries(keypadNames, 1)
 If count = 0 Then
 MsgBox("No button has been pressed since last call")
 Else
 ' process entries...
 EndIf
 keypadEntries.Dispose();
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SensorSetHotspotMode method
This method defines the behaviour of a monitored area (hotspot).

Guide_SIGAPI_20210108_ENG 70

Parameter Values I/O Description
LONG nMode

HOTSPOTMODE nMode

HotSpotMode mode

ByVal mode As
HotSpotMode

0 I Deactivates the monitored area
1 I Activates the monitored area (default after calling

SensorAddHotSpot() or
SensorAddScrollHotSpot(),
SensorAddKeypadHotSpot()); scrollable
hotspots can only be activated during an ongoing
signature capture process if they do not overlap
with the defined signature window (see
SensorSetSignRect()).

2 I Activates the monitored area but disables the
automatic inverting when the area is clicked

LONG nHotSpotId

int hotSpotId

ByVal hotSpotId
As Integer

>= 0 I ID of the hotspot that is to be changed

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.25.1 STPadCapt.ocx
Available from Version 8.0.16 onwards. The status described is available from Version 8.4.1.5.
LONG SensorSetHotSpotMode(LONG nMode, LONG nHotSpotId)

7.25.1.1 Implementation in C#
int nResult = axSTPadCapt1.SensorSetHotspotMode(1, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.25.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SensorSetHotspotMode(1, 0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.25.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.5.
LONG STSensorSetHotSpotMode(HOTSPOTMODE nMode, LONG nHotSpotId)
The HOTSPOTMODE enumeration is defined as follows:
kInactive = 0,
kActive = 1,
kInvertOff = 2

7.25.2.1 Implementation in C++
LONG nRc = STSensorSetHotspotMode(kActive, 0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.25.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.5.

Guide_SIGAPI_20210108_ENG 71

void SensorSetHotSpotMode(signotec.STPadLibNet.HotSpotMode mode, int
hotSpotId)

Sub SensorSetHotspotMode(ByVal mode As signotec.STPadLibNet.HotSpotMode,
ByVal hotSpotId As Integer)
The HotSpotMode enumeration is defined as follows:
Inactive = 0,
Active = 1,
InvertOff = 2

7.25.3.1 Implementation in C#
try
{
 stPad.SensorSetHotspotMode(HotSpotMode.Active, 0);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.25.3.2 Implementation in Visual Basic
Try
 STPad.SensorSetHotspotMode(HotSpotMode.Active, 0)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SensorClearHotSpots method
This method removes all monitored areas (hotspots). However, it does not delete the list of actuated
keypad hotspots in the signature device so that it can still be read out.

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error (not STPadLibNet.dll)

7.26.1 STPadCapt.ocx
Available from Version 8.0.1 onwards.
LONG SensorClearHotSpots()

7.26.1.1 Implementation in C#
int nResult = axSTPadCapt1.SensorClearHotSpots();
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.26.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SensorClearHotSpots()
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.26.2 STPadLib.dll
Available from Version 8.0.19 onwards.

Guide_SIGAPI_20210108_ENG 72

LONG STSensorClearHotSpots()

7.26.2.1 Implementation in C++
LONG nRc = STSensorClearHotSpots();
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.26.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void SensorClearHotSpots()

Sub SensorClearHotSpots()

7.26.3.1 Implementation in C#
try
{
 stPad.SensorClearHotSpots();
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.26.3.2 Implementation in Visual Basic
Try
 STPad.SensorClearHotSpots()
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SensorClearKeypadEntries method
This method deletes the list of actuated keypad hotspots in the signature device, but does not remove
the hotspots themselves. To do this, please use the SensorClearHotSpots() method.
Keypad hotspots work with the Sigma model from firmware 2.10, the Zeta model from firmware 1.0, the
Omega model from firmware 2.14, the Gamma model from firmware 1.20 and the Delta model from
firmware 1.22.

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.27.1 STPadCapt.ocx
Available from Version 8.4.3 onwards.
LONG SensorClearKeypadEntries()

7.27.1.1 Implementation in C#
int nResult = axSTPadCapt1.SensorClearKeypadEntries();
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.27.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SensorClearKeypadEntries()

Guide_SIGAPI_20210108_ENG 73

If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.27.2 STPadLib.dll
Available from Version 8.4.3 onwards.
LONG STSensorClearKeypadEntries()

7.27.2.1 Implementation in C++
LONG nRc = STSensorClearKeypadEntries();
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.27.3 STPadLibNet.dll
Available from Version 8.4.3 onwards.
void SensorClearKeypadEntries()

Sub SensorClearKeypadEntries()

7.27.3.1 Implementation in C#
try
{
 stPad.SensorClearKeypadEntries();
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.27.3.2 Implementation in Visual Basic
Try
 STPad.SensorClearKeypadEntries()
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SensorStartTimer method
This method starts a Timer, which starts a defined function, if there was no interaction on the sensor of
the pad for the given time periods. This Functionality is intended primarily to capture a signature
without user interaction, but it can also be used to get a confirmation for a displayed text, if the
belonging hotspot is not pressed for a given time period.

Guide_SIGAPI_20210108_ENG 74

Parameter Values I/O Description
LONG
nWaitBeforeAction

int
waitBeforeAction

ByVal
waitBeforeAction
As Integer

0 I No timer waiting for the first interaction is started
> 0 I Maximum time to wait for the first interaction (in

milliseconds) before the defined function is
triggered (for example, before the start of a
signature); the timer is restarted with this value after
the calling of SignatureRetry().

LONG
nWaitAfterAction

int
waitAfterAction

ByVal
waitAfterAction
As Integer

0 I After the first interaction no timer waiting for the
next interaction is started

> 0 I Maximum time to wait after the last interaction was
noticed in millisecond. If the given time period
elapsed without a new interaction, the wanted
function will be called (usually this takes places after
the signing is finished).

LONG nOptions

TimerOption
options

ByVal options As
TimerOption

0 I If the timer has expired, the
SensorTimeoutOccured() event is called.

1 I If the time period of nWaitBeforeAction has
elapsed, SignatureCancel() is called; if the
time period of nWaitAfterAction has elapsed,
SignatureConfirm() is called.

2 I If the timer has expired, SignatureCancel() is
called.

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.28.1 STPadCapt.ocx
Available from Version 8.0.11 onwards. The status described is available from Version 8.3.1 onwards.
LONG SensorStartTimer(LONG nWaitBeforeAction, LONG nWaitAfterAction,
LONG nOptions)

7.28.1.1 Implementation in C#
int nResult = axSTPadCapt1.SensorStartTimer(10000, 1000, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.28.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SensorStartTimer(10000,
1000, 0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.28.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STSensorStartTimer(LONG nWaitBeforeAction, LONG nWaitAfterAction,
LONG nOptions)

7.28.2.1 Implementation in C++
LONG nRc = STSensorStartTimer(10000, 1000, 0);

Guide_SIGAPI_20210108_ENG 75

if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.28.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void SensorStartTimer(int waitBeforeAction, int waitAfterAction,
signotec.STPadLibNet.TimerOption options)

Sub SensorStartTimer(ByVal waitBeforeAction As Integer, ByVal
waitAfterAction As Integer, ByVal options As
signotec.STPadLibNet.TimerOption)
The TimerOption enumeration is defined as follows:
CallEvent = 0,
CallCancelOrConfirm = 1,
CallCancel = 2

7.28.3.1 Implementation in C#
try
{
 stPad.SensorStartTimer(10000, 1000, TimerOption.CallEvent);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.28.3.2 Implementation in Visual Basic
Try
 STPad.SensorStartTimer(10000, 1000, TimerOption.CallEvent)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SensorStopTimer method
This method stops a timer started with SensorStartTimer() without triggering the function
defined there. The method is called automatically if SignatureConfirm() or
SignatureCancel() is called.

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 0 Method was executed successfully (will be returned also, if

no timer was set before)
< 0 Error

7.29.1 STPadCapt.ocx
Available from Version 8.0.11 onwards.
LONG SensorStopTimer()

7.29.1.1 Implementation in C#
int nResult = axSTPadCapt1.SensorStopTimer();
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

Guide_SIGAPI_20210108_ENG 76

7.29.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SensorStopTimer()
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.29.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STSensorStopTimer()

7.29.2.1 Implementation in C++
LONG nRc = STSensorStopTimer();
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.29.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void SensorStopTimer()

Sub SensorStopTimer()

7.29.3.1 Implementation in C#
try
{
 stPad.SensorStopTimer();
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.29.3.2 Implementation in Visual Basic
Try
 STPad.SensorStopTimer()
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SignatureSetSecureMode method
This method places the signature device in the secure sign mode. In this mode, the biometric data can
only be read using the RSAGetSignData() method. The SignatureGetSignData() and
SignatureGetIsoData() methods cannot be used; the SignatureDataReceived() event is
called with 0 for all parameters.
The method must be called before SignatureStart() is called; the mode is retained until the device
is closed.
It is possible to activate secure signature mode permanently inside the device. Please refer to your
contact at signotec as required. This can be checked by attempting to deactivate it (see below)
This method only works if a public key for encrypting the biometric data is stored in the device (see also
RSASetEncryptionCert()).

Guide_SIGAPI_20210108_ENG 77

Parameter Values I/O Description
VARIANT_BOOL
bEnable

BOOL bEnable

bool enable

ByVal enable As
Boolean

true I The secure signature mode is activated; the call fails
if no certificate for the encryption is stored on the
device (see also RSASetEncryptionCert()).

false I Secure signature mode is deactivated; if this mode
has been activated permanently inside the device,
error -36 will occur

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.30.1 STPadCapt.ocx
Available from Version 8.0.30 onwards. The status described is available from Version 8.1.2 onwards.
LONG SignatureSetSecureMode(VARIANT_BOOL bEnable)

7.30.1.1 Implementation in C#
int nResult = axSTPadCapt1.SignatureSetSecureMode(true);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.30.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SignatureSetSecureMode(True)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.30.2 STPadLib.dll
Available from Version 8.0.30 onwards. The status described is available from Version 8.1.2 onwards.
LONG STSignatureSetSecureMode(BOOL bEnable)

7.30.2.1 Implementation in C++
LONG nResult = STSignatureSetSecureMode(TRUE);
if (nResult < 0)
 wprintf(L"Error %d", nResult);

7.30.3 STPadLibNet.dll
Available from Version 8.0.30 onwards. The status described is available from Version 8.1.2 onwards.
void SignatureSetSecureMode(bool enable)

Sub SignatureSetSecureMode(ByVal enable As Boolean)

7.30.3.1 Implementation in C#
try
{
 stPad.SignatureSetSecureMode(true);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Guide_SIGAPI_20210108_ENG 78

7.30.3.2 Implementation in Visual Basic
Try
 STPad.SignatureSetSecureMode(True)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SignatureStart method
This method starts the signature capture process provided a connection has been opened via
DeviceOpen(). The entire sensor is used as a writing surface provided no signature window has been
defined. Signature data is only received, if a signature is actually entered on the pad. The method also
sets the colour of the LED to green unless the DeviceLedDefaultFlag property is set to FALSE. This
method automatically restores the previous content of the LCD unless this has been explicitly erased by
calling DisplayErase().
The method cannot be called if an active scrollable hotspot overlaps with the defined signature window
(see SensorSetSignRect()).
If a hash 1 has been previously set using the RSASetHash() method, it is now transferred to the
signature device. If, before this method is called, a hash 1 was generated using the
RSACreateDisplayHash() method, the content that was used to calculate the hash is displayed (if
it is not yet being displayed), and content signing is started. Outputs on the screen are no longer
possible in this state. This allows the signature device to ensure that hash 1 was calculated using the
screen content visible during signing. In both cases, hash 1 is inseparably linked with the signature
captured subsequently. Once a signature has been captured (see also SignatureStop() and/or
SignatureConfirm()) hash 1, hash 2 generated using the biometric data or the combination of
both can be digitally signed using the RSASign() method.

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.31.1 STPadCapt.ocx
Available from Version 8.0.1 onwards. The status described is available from Version 8.4.1.5.
LONG SignatureStart()

7.31.1.1 Implementation in C#
int nResult = axSTPadCapt1.SignatureStart();
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.31.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SignatureStart()
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.31.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.5.
LONG STSignatureStart()

Guide_SIGAPI_20210108_ENG 79

7.31.2.1 Implementation in C++
LONG nRc = STSignatureStart();
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.31.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.5.
void SignatureStart()

Sub SignatureStart()

7.31.3.1 Implementation in C#
try
{
 stPad.SignatureStart();
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.31.3.2 Implementation in Visual Basic
Try
 STPad.SignatureStart()
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SignatureStop method
This method terminates the signature capture process that is currently running, and caches the captured
signature data. Unlike the SignatureConfirm() method, it does not change the display content.
The SignatureStop() method sets the colour of the LED to yellow unless the
DeviceLedDefaultFlag property is set to FALSE.
The hash 1, hash 2 or the combination of hash 1 and hash 2 can be signed in the signature device using
the RSASign() method (see also SignatureStart()).

Parameter Values I/O Description
- - - -
Return value Values Description
LONG

int

Integer

>= 0 Number of points captured
< 0 Error (not STPadLibNet.dll)

7.32.1 STPadCapt.ocx
Available from Version 8.0.14 onwards. The status described is available from Version 8.0.26 onwards.
LONG SignatureStop()

Guide_SIGAPI_20210108_ENG 80

7.32.1.1 Implementation in C#
int nResult = axSTPadCapt1.SignatureStop();
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);
else
 MessageBox.Show(String.Format("{0} points captured.",
nResult);

7.32.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SignatureStop()
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
Else
 MsgBox(CStr(nResult) & " points captured.")
End If

7.32.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.0.26 onwards.
LONG STSignatureStop()

7.32.2.1 Implementation in C++
LONG nRc = STSignatureStop();
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
 wprintf(L"%d points captured.", nRc);

7.32.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.0.26 onwards.
int SignatureStop()

Function SignatureStop() As Integer

7.32.3.1 Implementation in C#
try
{
 int nResult = stPad.SignatureStop();
 MessageBox.Show(String.Format("{0} points captured.",
nResult));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.32.3.2 Implementation in Visual Basic
Try
 Dim nResult As Integer = STPad.SignatureStop()
 MsgBox(CStr(nResult) & " points captured.")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Guide_SIGAPI_20210108_ENG 81

 SignatureConfirm method
This methods terminates the signature capture process that is currently running (if any), caches the
captured signature data and, unlike SignatureStop(), erases the entire LCD. The displayed
signature is retained in the control element for visual inspection. To delete the signature from the
control element, please use ControlErase(). SignatureConfirm() sets the colour of the LED to
yellow unless the DeviceLedDefaultFlag property is set to FALSE.
The hash 1, hash 2 or the combination of hash 1 and hash 2 can be signed digitally in the signature
device using the RSASign() method (see also SignatureStart()).

Parameter Values I/O Description
- - - -
Return value Values Description
LONG

int

Integer

>= 0 Number of points captured
< 0 Error (not STPadLibNet.dll)

7.33.1 STPadCapt.ocx
Available from Version 8.0.1 onwards. The status described is available from Version 8.0.26 onwards.
LONG SignatureConfirm()

7.33.1.1 Implementation in C#
int nResult = axSTPadCapt1.SignatureConfirm();
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);
else
 MessageBox.Show(String.Format("{0} points captured.",
nResult);

7.33.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SignatureConfirm()
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
Else
 MsgBox(CStr(nResult) & " points captured.")
End If

7.33.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.0.26 onwards.
LONG STSignatureConfirm()

7.33.2.1 Implementation in C++
LONG nRc = STSignatureConfirm();
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
 wprintf(L"%d points captured.", nRc);

7.33.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.0.26 onwards.
int SignatureConfirm()

Function SignatureConfirm() As Integer

Guide_SIGAPI_20210108_ENG 82

7.33.3.1 Implementation in C#
try
{
 int nResult = stPad.SignatureConfirm();
 MessageBox.Show(String.Format("{0} points captured.",
nResult));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.33.3.2 Implementation in Visual Basic
Try
 Dim nResult As Integer = STPad.SignatureConfirm()
 MsgBox(CStr(nResult) & " points captured.")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SignatureRetry method
This method discards the signature data without ending the signature capture process, and deletes the
rendered signature in the control element and on the LCD. This method will start a new capture process
if the signature capture process was terminated beforehand with SignatureStop().

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.34.1 STPadCapt.ocx
Available from Version 8.0.1 onwards.
LONG SignatureRetry()

7.34.1.1 Implementation in C#
int nResult = axSTPadCapt1.SignatureRetry();
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.34.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SignatureRetry()
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.34.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STSignatureRetry()

7.34.2.1 Implementation in C++
LONG nRc = STSignatureRetry();
if (nRc < 0)

Guide_SIGAPI_20210108_ENG 83

 wprintf(L"Error %d", nRc);

7.34.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void SignatureRetry()

Sub SignatureRetry()

7.34.3.1 Implementation in C#
try
{
 int nResult = stPad.SignatureRetry();
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.34.3.2 Implementation in Visual Basic
Try
 Dim nResult As Integer = STPad.SignatureRetry()
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SignatureCancel method
This method ends the capture process, discards the signature data and deletes the entire LCD or just the
signature. It also sets the colour of the LED to yellow unless the DeviceLedDefaultFlag property is
set to FALSE. This method is called automatically when DeviceClose() is used.
Calling this method aborts content signing (see also SignatureStart()). The signature device can
then be used as normal again.

Parameter Values I/O Description
VARIANT nErase

ERASEOPTION
nErase

EraseOption erase

ByVal erase As
EraseOption

0 I The entire LCD will be deleted (Default)
1 I Only the signature will be deleted (Optional)

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.35.1 STPadCapt.ocx
Available from Version 8.0.1 onwards. The status described is available from Version 8.0.24 onwards.
LONG SignatureCancel([optional]VARIANT nErase)
Note: The nErase parameter is optional and must contain a number if it is transferred.

7.35.1.1 Implementation in C#
int nResult = axSTPadCapt1.SignatureCancel();
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

Guide_SIGAPI_20210108_ENG 84

7.35.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.SignatureCancel()
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.35.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.0.24 onwards.
LONG STSignatureCancel(ERASEOPTION nErase=kComplete)
The ERASEOPTION enumeration is defined as follows:
kComplete = 0,
kSignature = 1

7.35.2.1 Implementation in C++
LONG nRc = STSignatureCancel();
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.35.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.0.24 onwards.
void SignatureCancel()

void SignatureCancel(signotec.STPadLibNet.EraseOption erase)

Sub SignatureCancel()

Sub SignatureCancel(ByVal erase As signotec.STPadLibNet.EraseOption)
The EraseOption enumeration is defined as follows:
Complete = 0,
Signature = 1

7.35.3.1 Implementation in C#
try
{
 int nResult = stPad.SignatureCancel();
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.35.3.2 Implementation in Visual Basic
Try
 Dim nResult As Integer = STPad.SignatureCancel()
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SignatureGetSignData method
This method returns the digitalised signature in SignData format. In order to keep the biometric data in
an RSA-encrypted format, please use the RSAGetSignData() method.

Guide_SIGAPI_20210108_ENG 85

Parameter Values I/O Description
BYTE* pbtSignData NULL I The method returns the required size of the array in

the pnSize parameter.
other I/O Array (in the required size) in which the SignData is

written; pnSize must correspond to the value
returned for the previous call.

LONG* pnSize > 0 I/O Size of the array (in bytes) in which the SignData is
to be written

Return value Values Description
VARIANT empty Error

other Signature in SignData format as a byte array
LONG 0 Method was executed successfully

< 0 Error
byte[]

Byte()

!=
NULL

Signature in SignData format

7.36.1 STPadCapt.ocx
Available from Version 8.0.19 onwards.
VARIANT SignatureGetSignData()

7.36.1.1 Implementation in C#
byte[] btSignData = (byte[])axSTPadCapt1.SignatureGetSignData();
if (btSignData == null)
{
 MessageBox.Show(String.Format("Error"));
 return;
}

7.36.1.2 Implementation in Visual Basic
Dim btSignData As Byte() = AxSTPadCapt1.SignatureGetSignData()
If btSignData Is Nothing Then
 MsgBox("Error")
 Exit Sub
End If

7.36.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STSignatureGetSignData(BYTE* pbtSignData, LONG* pnSize)

7.36.2.1 Implementation in C++
LONG nSize = 0;
LONG nRc = STSignatureGetSignData(NULL, &nSize);
BYTE* pbtSignData = NULL;
if (nRc == 0)
{
 pbtSignData = new BYTE[nSize];
 nRc = STSignatureGetSignData(pbtSignData, &nSize);
}
if (nRc < 0)
 wprintf(L"Error %d", nRc);

Guide_SIGAPI_20210108_ENG 86

7.36.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
byte[] SignatureGetSignData()

Function SignatureGetSignData() As Byte()

7.36.3.1 Implementation in C#
byte[] signData;
try
{
 signData = stPad.SignatureGetSignData();
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.36.3.2 Implementation in Visual Basic
Dim signData As Byte()
Try
 signData = STPad.SignatureGetSignData()
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SignatureGetIsoData method
This method returns the digitised signature in a standardised format in accordance with ISO/IEC 19794-
7. In order to keep the biometric data in an RSA-encrypted format, please use the RSAGetSignData()
method.

Parameter Values I/O Description
BYTE* pbtIsoData NULL I The method returns the required size of the array in

the pnSize parameter.
other I/O Array (in the required size) in which the ISO data is

written; pnSize must correspond to the value
returned for the previous call.

LONG* pnSize > 0 I/O Size of the array (in bytes) in which the ISO data is to
be written

LONG nOptions

IsoDataFlag
options

ByVal options As
IsoDataFlag

Bitmask containing one or more hexadecimal values from the
following list:
0x01 I An ‘Extended Data’ block is added with data specific

to signotec; if you would like more details, please
speak with your contact at signotec.

VARIANT
&vaCustomData

BYTE*
pbtCustomData

byte[] customData

ByVal customData
As Byte()

NULL I None
other I Additional data to be added to the ‘Extended Data’

block; speak with your contact at signotec for more
details

LONG
nCustomDataSize

>= 0 I Size of the array referenced by pbtCustomData

Guide_SIGAPI_20210108_ENG 87

LONG
nCustomDataBlocks

int
customDataBlocks

ByVal
customDataBlocks
As Integer

>= 0 I Number of data blocks contained in ‘Custom Data’

Return value Values Description
VARIANT empty Error

other Signature in ISO format as a byte array
LONG 0 Method was executed successfully

< 0 Error
byte[]

Byte()

!=
NULL

Signature in ISO format

7.37.1 STPadCapt.ocx
Available from Version 8.0.30 onwards.
VARIANT SignatureGetIsoData(LONG nOptions, VARIANT &vaCustomData, LONG
nCustomDataBlocks)

7.37.1.1 Implementation in C#
byte[] btIsoData = (byte[])axSTPadCapt1.SignatureGetIsoData(0,
null, 0);
if (btIsoData == null)
{
 MessageBox.Show(String.Format("Error"));
 return;
}

7.37.1.2 Implementation in Visual Basic
Dim btIsoData As Byte() = AxSTPadCapt1.SignatureGetIsoData(0,
Nothing, 0)
If btIsoData Is Nothing Then
 MsgBox("Error")
 Exit Sub
End If

7.37.2 STPadLib.dll
Available from Version 8.0.30 onwards.
LONG STSignatureGetIsoData(BYTE* pbtIsoData, LONG* pnSize, LONG
nOptions, BYTE* pbtCustomData, LONG nCustomDataSize, LONG
nCustomDataBlocks)
The following values defined in the header file can be used for the nOptions parameter:
#define STPAD_ISO_EXTENDEDDATA 0x01

Guide_SIGAPI_20210108_ENG 88

7.37.2.1 Implementation in C++
LONG nSize = 0;
LONG nRc = STSignatureGetIsoData(NULL, &nSize, 0, NULL, 0, 0);
BYTE* pbtIsoData = NULL;
if (nRc == 0)
{
 pbtIsoData = new BYTE[nSize];
 nRc = STSignatureGetIsoData(pbtIsoData, &nSize, 0, NULL, 0,
0);
}
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.37.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
byte[] SignatureGetIsoData(IsoDataFlag options, byte[]customData, int
customDataBlocks)

Function SignatureGetIsoData(ByVal options As IsoDataFlag, ByVal
customData As Byte(), ByVal customDataBlocks As Integer) As Byte()
The IsoDataFlag enumeration is defined as follows:
None = 0x00,
ExtendedData = 0x01

7.37.3.1 Implementation in C#
byte[] btIsoData = null;
try
{
 btIsoData = stPad.SignatureGetIsoData(IsoDataFlag.None, null,
0);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.37.3.2 Implementation in Visual Basic
Dim btIsoData As Byte() = Nothing
Try
 btIsoData = STPad.SignatureGetIsoData(IsoDataFlag.None,
Nothing, 0)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SignatureSaveAsStream/SignatureSaveAsFile method
These methods are obsolete and are only included for compatibility reasons. Please use
SignatureSaveAsStreamEx() or SignatureSaveAsFileEx() instead.

 SignatureSaveAsStreamEx / SignatureSaveAsFileEx method
This method can be used to request a captured signature as image data in the memory or save it as an
image file on the hard drive. The colour depth depends on the file type, the device used and the

Guide_SIGAPI_20210108_ENG 89

settings. If no further settings are made (see nOptions parameter), the image is created with the
aspect ratio of the rectangle that surrounds the signature.

Parameter Values I/O Description
BYTE* pbtImage NULL I The method calculates the image, caches it and

returns the required size of the array in the pnSize
parameter.

other I/O Array (in the required size) in which the cached
image data is written; pnSize must correspond to
the value returned for the previous call; all other
parameters are ignored.

LONG* pnSize > 0 I/O Size of the array (in bytes) in which the image data is
to be written

BSTR bstrPath

LPCWSTR szPath

string path

ByVal path As
String

!=
NULL

I Storage location for the image file as a full path that
includes the file name

LONG nResolution

int resolution

ByVal resolution
As Integer

>=75
<=600

I Resolution of the image file in pixels per inch (ppi);
for the signature to be displayed in its original size,
this value must be identical to the resolution of the
document, in which the signature is to be integrated

LONG nWidth

int width

ByVal width As
Integer

0 I The image will be created in original size; the
nHeight or height parameter is ignored

> 0 I Maximum width of the image in pixels

LONG nHeight

int height

ByVal height As
Integer

0 I The image will be created in original size; the
nWidth or width parameter is ignored

> 0 I Maximum height of the image in pixels

LONG nFileType

FILETYPE
nFileType

0 I Use TIFF with CCITT4 compression (b/w image) or
LZW compression (colour image) as the file format
(recommended)

1 I Use PNG file format
2 I Use BMP file format
3 I Use JPEG with a quality setting of 75 as the file

format
4 I Use GIF file format (the resolution will always be 96

ppi)
200 -
204

I Image data is not returned as binary data, but as
Base64 encoded data; otherwise as values 0–4 (only
STPadCapt.ocx for the
SignatureSaveAsStreamEx() method).

LONG nPenWidth

int penWidth

ByVal penWidth As
Integer

< 0 I Fixed pen width in pixels (absolute value); the
pressure values are visualised by drawing in variable
brightness

0 I A variable pen width is used that is dependent on
the resolution and the pressure values

> 0 I Fixed pen width in pixels

Guide_SIGAPI_20210108_ENG 90

OLE_COLOR clrPen

COLORREF clrPen

Color penColor

ByVal penColor As
Color

>= 0 I Signature colour

LONG nOptions

SignatureImageFla
g options

ByVal options As
SignatureImageFla
g

Bitmask containing one or more hexadecimal values from the
following list:
0x000
1

I A visual timestamp is added to the image beneath
the signature

0x000
2

I The signature is rendered in the image that was
displayed during the capture process; the image
always has the aspect ratio of the display that is
used, nWidth or width or nHeight or height
may be ignored

0x000
4

I The defined hotspot areas are whitened in the
image (only if 0x0002 is set).

0x000
8

I White areas at the sides of the signature are not
removed; if nWidth or width and nHeight or
height are greater than 0, the signature is scaled
to the defined height or width depending on the
aspect ratio and the image to be created has the
exact size defined (only if 0x0002 is not set)

0x001
0

I The signature will be aligned to the left (only if
0x0008 is set).

0x002
0

I The signature will be aligned to the right (only if
0x0008 is set)

0x004
0

I The signature will be aligned to the top (only if
0x0008 is set)

0x008
0

I The signature will be aligned to the bottom (only if
0x0008 is set)

0x010
0

I The timestamp size is relative to the height of the
created image, not to the height of the display; this
setting is useful if the signature is scaled to a given
image size to make sure that the timestamp size is
independent from the size of the actual signature
(only if 0x0001 is set)

0x020
0

I The signature is never smoothed independent from
all other settings; this will create small files

0x040
0

I The signature is always smoothed independent from
all other settings

0x080
0

I The image includes the overlay rectangle if
displayed (only if 0x0002 is set)

0x100
0

I White areas are stored as transparent (only if
0x0002 is not set and PNG is selected as the file
format)

0x200
0

I The current display content and not the content
displayed during capture is used as the background
image (only if 0x0002 is set)

0x400
0

I The pen width will vary by the value indicated
depending on the pressure values

Guide_SIGAPI_20210108_ENG 91

Return value Values Description
VARIANT empty Error

other Image data as array of Bytes or Base64-coded String
LONG 0 Method was executed successfully

< 0 Error
Bitmap !=

NULL
Image as System.Drawing.Bitmap

7.39.1 STPadCapt.ocx
Available from Version 8.0.14 onwards. The status described is available from Version 8.3.1 onwards.
VARIANT SignatureSaveAsStreamEx(LONG nResolution, LONG nWidth, LONG
nHeight, LONG nFileType, LONG nPenWidth, OLE_COLOR clrPen, LONG
nOptions)

LONG SignatureSaveAsFileEx(BSTR bstrPath, LONG nResolution, LONG nWidth,
LONG nHeight, LONG nFileType, LONG nPenWidth, OLE_COLOR clrPen, LONG
nOptions)

7.39.1.1 Implementation in C#
Work in the memory:
byte[] btSignature =
(byte[])axSTPadCapt1.SignatureSaveAsStreamEx(300, 0, 0, 0, 0,
(uint)ColorTranslator.ToOle(Color.FromArgb(0, 0, 255)), 0);
if (btSignature == null)
{
 MessageBox.Show(String.Format("Error"));
 return;
}
MemoryStream memoryStream = new MemoryStream(btSignature);
Image image = Image.FromStream(memoryStream);

Work with files:
int nResult;
nResult = axSTPadCapt1.SignatureSaveAsFileEx("C:/Signature.tif",
300, 0, 0, 0, 0, (uint)ColorTranslator.ToOle(Color.FromArgb(0, 0,
255)), 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.39.1.2 Implementation in Visual Basic
Work in the memory:
Dim btSignature As Byte() =
AxSTPadCapt1.SignatureSaveAsStreamEx(300, _ 0, 0, 0, 0, RGB(0, 0,
255), 0)
If btSignature Is Nothing Then
 MsgBox("Error")
 Exit Sub
End If
Dim memoryStream As MemoryStream = New MemoryStream(btSignature)
Dim image As Image = Image.FromStream(memoryStream)

Guide_SIGAPI_20210108_ENG 92

Work with files:
Dim nResult As Integer
nResult = AxSTPadCapt1.SignatureSaveAsFileEx("C:/Signature.tif",
300, _ 0, 0, 0, 0, RGB(0, 0, 255), 0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.39.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.0.24 onwards.
LONG STSignatureSaveAsStreamEx(BYTE* pbtImage, LONG* pnSize, LONG
nResolution, LONG nWidth, LONG nHeight, FILETYPE nFileType, LONG
nPenWidth, COLORREF clrPen, LONG nOptions)

LONG STSignatureSaveAsFileEx(LPCWSTR szPath, LONG nResolution, LONG
nWidth, LONG nHeight, FILETYPE nFileType, LONG nPenWidth, COLORREF
clrPen, LONG nOptions)
The FILETYPE enumeration is defined as follows:
kTiff = 0,
kPng = 1,
kBmp = 2,
kJpeg = 3,
kGif = 4
The following values defined in the header file can be used for the nOptions parameter:
#define STPAD_SIMG_TIMESTAMP 0x0001
#define STPAD_SIMG_BACKIMAGE 0x0002
#define STPAD_SIMG_HOTSPOTS 0x0004
#define STPAD_SIMG_NOCROPPING 0x0008
#define STPAD_SIMG_ALIGNLEFT 0x0010
#define STPAD_SIMG_ALIGNRIGHT 0x0020
#define STPAD_SIMG_ALIGNTOP 0x0040
#define STPAD_SIMG_ALIGNBOTTOM 0x0080
#define STPAD_SIMG_TIMESTAMPIMGREL 0x0100
#define STPAD_SIMG_DONTSMOOTH 0x0200
#define STPAD_SIMG_SMOOTH 0x0400
#define STPAD_SIMG_OVERLAYIMAGE 0x0800
#define STPAD_SIMG_TRANSPARENT 0x1000
#define STPAD_SIMG_CURRENTIMAGES 0x2000
#define STPAD_SIMG_VARIABLEPENWIDTH 0x4000

Guide_SIGAPI_20210108_ENG 93

7.39.2.1 Implementation in C++
Work in the memory:
LONG nSize = 0;
LONG nRc = STSignatureSaveAsStreamEx(NULL, &nSize, 300, 0, 0,
kBmp, 0, RGB(0, 0, 255), 0);
BYTE* pbtImage = NULL;
BITMAP bitmap;
if (nRc == 0)
{
 pbtImage = new BYTE[nSize];
 nRc = STSignatureSaveAsStreamEx(pbtImage, &nSize, 300, 0, 0,
kBmp, 0, RGB(0, 0, 255), 0);
}
if (nRc == 0)
{
 BITMAPFILEHEADER bmfh = (*(BITMAPFILEHEADER*)pbtImage);
 BITMAPINFO bmi = (*(BITMAPINFO*)(pbtImage +
sizeof(BITMAPFILEHEADER)));
 bitmap.bmType = 0;
 bitmap.bmWidth = bmi.bmiHeader.biWidth;
 bitmap.bmHeight = bmi.bmiHeader.biHeight;
 bitmap.bmPlanes = bmi.bmiHeader.biPlanes;
 bitmap.bmBitsPixel = bmi.bmiHeader.biBitCount;
 bitmap.bmWidthBytes = ((bitmap.bmWidth * bitmap.bmBitsPixel +
31) >> 5) << 2;
 bitmap.bmBits = new BYTE[bitmap.bmHeight *
bitmap.bmWidthBytes];
 memcpy(bitmap.bmBits, pbtImage + bmfh.bfOffBits,
bitmap.bmHeight * bitmap.bmWidthBytes);
 delete [] pbtImage;
}
if (nRc < 0)
 wprintf(L"Error %d", nRc);

Work with files:
LONG nRc = STSignatureSaveAsFileEx(L"C:/Signature.tif", 300, 0, 0,
kTiff, 0, RGB(0, 0, 255), 0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.39.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.0.24 onwards.

Guide_SIGAPI_20210108_ENG 94

System.Drawing.Bitmap SignatureSaveAsStreamEx(int resolution, int width,
int height, int penWidth, System.Drawing.Color penColor,
signotec.STPadLibNet.SignatureImageFlag options)

void SignatureSaveAsFileEx(string path, int resolution, int width, int
height, System.Drawing.Imaging.ImageFormat fileType, int penWidth,
System.Drawing.Color penColor, signotec.STPadLibNet.SignatureImageFlag
options)

Function SignatureSaveAsFileEx(ByVal resolution As Integer, ByVal width
As Integer, ByVal height As Integer, ByVal penWidth As Integer, ByVal
penColor As System.Drawing.Color, ByVal options As
signotec.STPadLibNet.SignatureImageFlag) As System.Drawing.Bitmap

Sub SignatureSaveAsFileEx(ByVal path As String, ByVal resolution As
Integer, ByVal width As Integer, ByVal height As Integer, ByVal fileType
As System.Drawing.Imaging.ImageFormat, ByVal penWidth As Integer, ByVal
penColor As System.Drawing.Color, ByVal options As
signotec.STPadLibNet.SignatureImageFlag)
The SignatureImageFlag enumeration is defined as follows:
None = 0x0000,
Timestamp = 0x0001,
BackImage = 0x0002,
ExcludeHotSpots = 0x0004,
DontCrop = 0x0008,
AlignLeft = 0x0010,
AlignRight = 0x0020,
AlignTop = 0x0040,
AlignBottom = 0x0080,
TimestampRelToImage = 0x0100,
DontSmooth = 0x0200,
Smooth = 0x0400,
OverlayImage = 0x0800,
TransparentBack = 0x1000,
CurrentImages = 0x2000,
VariablePenWidth = 0x4000

7.39.3.1 Implementation in C#
Work in the memory:
Bitmap bitmap;
try
{
 bitmap = stPad.SignatureSaveAsStreamEx(300, 0, 0, 0,
Color.FromArgb(0, 0, 255), SignatureImageFlag.None);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Guide_SIGAPI_20210108_ENG 95

Work with files:
try
{
 stPad.SignatureSaveAsFileEx("C:/Signature.tif", 300, 0, 0,
ImageFormat.Tiff, 0, Color.FromArgb(0, 0, 255),
SignatureImageFlag.None);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.39.3.2 Implementation in Visual Basic
Work in the memory:
Dim bitmap As Bitmap
Try
 bitmap = STPad.SignatureSaveAsStreamEx(300, 0, 0, 0, _
Color.FromArgb(0, 0, 255), SignatureImageFlag.None)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Work with files:
Try
 STPad.SignatureSaveAsFileEx("C:/Signature.tif", 300, 0, 0, _
ImageFormat.Tiff, 0, Color.FromArgb(0, 0, 255), _
SignatureImageFlag.None)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SignatureGetBounds method
This method delivers the coordinates of the rectangle in which the captured signature is given.

Guide_SIGAPI_20210108_ENG 96

Parameter Values I/O Description
LONG* pnLeft

out int left

ByRef left As
Integer

>= 0 O Left border of the signature rectangle

LONG* pnTop

out int top

ByRef top As
Integer

>= 0 O Upper border of the signature rectangle

LONG* pnRight

out int right

ByRef right As
Integer

>= 0 O Right border of the signature rectangle

LONG* pnBottom

out int bottom

ByRef bottom As
Integer

>= 0 O Bottom border of the signature rectangle

LONG nOptions

SignatureBoundsOp
tion options

ByVal options As
SignatureBoundsOp
tion

0 I The coordinates will be delivered relative to the size
of the used LCD

1 I The coordinates are returned relative to the defined
signature window (see SensorSetSignRect())

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.40.1 STPadCapt.ocx
Available from Version 8.0.11 onwards. The status described is available from Version 8.3.1 onwards.
LONG SignatureGetBounds(LONG* pnLeft, LONG* pnTop, LONG* pnRight, LONG*
pnBottom, LONG nOptions)

7.40.1.1 Implementation in C#
int nLeft, nTop, nRight, nBottom;
int nResult = axSTPadCapt1.SignatureGetBounds(ref nLeft, ref nTop,
ref nRight, ref nBottom, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error"));
else
 MessageBox.Show(String.Format("The Bounds of the Signature
are: " + "{0} (left), {1} (top), {2} (right) " +
"&& {3} (bottom).", nLeft, nTop, nRight, nBottom));

Guide_SIGAPI_20210108_ENG 97

7.40.1.2 Implementation in Visual Basic
Dim nLeft, nTop, nRight, nBottom As Integer
Dim nResult As Integer = AxSTPadCapt1.SignatureGetBounds(nLeft,
nTop, _ nRight, nBottom, 0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
Else
 MsgBox("The Bounds of the Signature are:" + CStr(nLeft) + _
" (left), " + CStr(nTop) + " (top), " + CStr(nRight) + _ "
(right) && " + CStr(nBottom) + " (bottom).")
End If

7.40.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STSignatureGetBounds(LONG* pnLeft, LONG* pnTop, LONG* pnRight,
LONG* pnBottom, LONG nOptions)
The following values defined in the header file can be used for the nOptions parameter:
#define STPAD_BOUNDS_DISPLAY 0
#define STPAD_BOUNDS_SIGNRECT 1

7.40.2.1 Implementation in C++
LONG nLeft, nTop, nRight, nBottom;
LONG nRc = STSignatureGetBounds(&nLeft, &nTop, &nRight, &nBottom,
STPAD_BOUNDS_DISPLAY);
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
{
 wprintf(L"The Bounds of the Signature are: %d (left), %d
(top), %d (right) & %d (bottom).", nLeft, nTop, nRight, nBottom);
}

7.40.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.3.1 onwards.
void SignatureGetBounds(out int left, out int top, out int right, out
int bottom, signotec.STPadLibNet.SignatureBoundsOption options)

Sub SignatureGetBounds(ByRef left As Integer, ByRef top As Integer,
ByRef right As Integer, ByRef bottom As Integer, ByVal options As
signotec.STPadLibNet.SignatureBoundsOption)
The SignatureBoundsOption enumeration is defined as follows:
DisplayRelative = 0,
SignRectRelative = 1

Guide_SIGAPI_20210108_ENG 98

7.40.3.1 Implementation in C#
try
{
 int nLeft, nTop, nRight, nBottom;
 stPad.SignatureGetBounds(out nLeft, out nTop, out nRight, out
nBottom, SignatureBoundsOption.DisplayRelative);
 MessageBox.Show(String.Format("The Bounds of the Signature
are: " + "{0} (left), {1} (top), {2} (right) " +
"&& {3} (bottom).", nLeft, nTop, nRight, nBottom));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.40.3.2 Implementation in Visual Basic
Try
 Dim nLeft, nTop, nRight, nBottom As Integer
 STPad.SignatureGetBounds(nLeft, nTop, nRight, nBottom,
SignatureBoundsOption.DisplayRelative)
 MsgBox("The Bounds of the Signature are:" + CStr(nLeft) + _
" (left), " + CStr(nTop) + " (top), " + CStr(nRight) + _ "
(right) && " + CStr(nBottom) + " (bottom).")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 SignatureScaleToDisplay method
This method converts the sensor coordinates delivered by the SignatureDataReceived() event
into display coordinates.

Parameter Values I/O Description
LONG nSensorValue

int sensorValue

ByVal sensorValue
As Integer

>= 0 I x or y value of a sensor coordinate

Return value Values Description
LONG

int

Integer

0 x or y value of a display coordinate
< 0 Error (not STPadLibNet.dll)

7.41.1 STPadCapt.ocx
Available from Version 8.0.19 onwards.
LONG SignatureScaleToDisplay(LONG nSensorValue)

7.41.1.1 Implementation in C#
int nResult = axSTPadCapt1.SignatureScaleToDisplay(1000);
if (nResult < 0)
 MessageBox.Show(String.Format("Error"));
else
 MessageBox.Show(String.Format("Display Value: {0}", nResult));

Guide_SIGAPI_20210108_ENG 99

7.41.1.2 Implementation in Visual Basic
Dim nResult As Integer =
AxSTPadCapt1.SignatureScaleToDisplay(1000)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
Else
 MsgBox("Display Value:" + CStr(nResult))
End If

7.41.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STSignatureScaleToDisplay(LONG nSensorValue)

7.41.2.1 Implementation in C++
LONG nRc = STSignatureScaleToDisplay(1000);
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
 wprintf(L"Display Value: %d", nRc);

7.41.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
int SignatureScaleToDisplay(int sensorValue)

Function SignatureScaleToDisplay(ByVal sensorValue As Integer)

7.41.3.1 Implementation in C#
try
{
 MessageBox.Show(String.Format("Display Value: {0}",
stPad.SignatureScaleToDisplay(1000)));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.41.3.2 Implementation in Visual Basic
Try
 MsgBox("Display Value:" +
CStr(STPad.SignatureScaleToDisplay(1000)))
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplayErase method
This method erases both the foreground and the background memory and removes the overlay
rectangle if set. Thus the entire contents of the LCD are erased. Depending on the value of the
ControlMirrorDisplay property, this content is also erased from the control element. To erase
only parts of the memory defined with DisplaySetTarget(), please use DisplayEraseRect().

Guide_SIGAPI_20210108_ENG 100

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.42.1 STPadCapt.ocx
Available from Version 8.0.1 onwards.
LONG DisplayErase()

7.42.1.1 Implementation in C#
int nResult = axSTPadCapt1.DisplayErase();
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.42.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.DisplayErase()
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.42.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplayErase()

7.42.2.1 Implementation in C++
LONG nRc = STDisplayErase();
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.42.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void DisplayErase()

Sub DisplayErase()

7.42.3.1 Implementation in C#
try
{
 stPad.DisplayErase();
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.42.3.2 Implementation in Visual Basic
Try
 STPad.DisplayErase()
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Guide_SIGAPI_20210108_ENG 101

 DisplayEraseRect method
This method erases a rectangle in the memory defined with DisplaySetTarget(). If erasing is
performed on the display and if the ControlMirrorDisplay property is set to 2, the rectangle is
also erased in the control element.

Parameter Values I/O Description
LONG nLeft

int left

ByVal left As
Integer

>= 0 I Left boundary; 0 is on the far left of the display

LONG nTop

int top

ByVal top As
Integer

>= 0 I Upper boundary; 0 is at the top of the display

LONG nWidth

int width

ByVal width As
Integer

> 0 I Width; DisplayWidth holds the width of the LCD
used

0 I Right boundary is automatically set to the maximum
value (right edge of the LCD)

LONG nHeight

int height

ByVal height As
Integer

> 0 I Height; DisplayHeight holds the height of the
LCD used

0 I Lower boundary is automatically set to the
maximum value (lower edge of the LCD)

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.43.1 STPadCapt.ocx
Available from Version 8.0.16 onwards. The status described is available from Version 8.3.1 onwards.
LONG DisplayEraseRect(LONG nLeft, LONG nTop, LONG nWidth, LONG nHeight)

7.43.1.1 Implementation in C#
int nResult = axSTPadCapt1.DisplayEraseRect(10, 50, 30, 20);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.43.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.DisplayEraseRect(10, 50, 30,
20)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.43.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplayEraseRect(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight)

7.43.2.1 Implementation in C++
LONG nRc = STDisplayEraseRect(10, 50, 30, 20);
if (nRc < 0)

Guide_SIGAPI_20210108_ENG 102

 wprintf(L"Error %d", nRc);

7.43.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void DisplayEraseRect(int left, int top, int width, int height)

Sub DisplayEraseRect(ByVal left As Integer, ByVal top As Integer, ByVal
width As Integer, ByVal height As Integer)

7.43.3.1 Implementation in C#
try
{
 stPad.DisplayEraseRect(10, 50, 30, 20);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.43.3.2 Implementation in Visual Basic
Try
 STPad.DisplayEraseRect(10, 50, 30, 20)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplayConfigPen method
This method sets the pen width and colour used to display a signature on the LCD. The pen width is
always stored permanently in the device; the pen colour is stored permanently only on Omega devices
with firmware 1.4 or later.

Parameter Values I/O Description
LONG nWidth

int width

ByVal width As
Integer

1 - 3 I Width in pixels

OLE_COLOR clrPen

COLORREF clrPen

Color penColor

ByVal penColor As
Color

>= 0 I Colour; this parameter is ignored for the Sigma
model

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.44.1 STPadCapt.ocx
Available from Version 8.0.11 onwards. The status described is available from Version 8.3.1 onwards.
LONG DisplayConfigPen(LONG nWidth, OLE_COLOR clrPen)

Guide_SIGAPI_20210108_ENG 103

7.44.1.1 Implementation in C#
int nResult = axSTPadCapt1.DisplayConfigPen(2,
(uint)ColorTranslator.ToOle(Color.FromArgb(0, 0, 255)));
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.44.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.DisplayConfigPen(2, RGB(0,
0, 255))
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.44.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplayConfigPen(LONG nWidth, COLORREF clrPen)

7.44.2.1 Implementation in C++
LONG nRc = STDisplayConfigPen(2, RGB(0, 0, 255));
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.44.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void DisplayConfigPen(int width, System.Drawing.Color penColor)

Sub DisplayConfigPen(ByVal width As Integer, ByVal penColor As
System.Drawing.Color)

7.44.3.1 Implementation in C#
try
{
 stPad.DisplayConfigPen(2, Color.FromArgb(0, 0, 255));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.44.3.2 Implementation in Visual Basic
Try
 STPad.DisplayConfigPen(2, Color.FromArgb(0, 0, 255))
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplaySetFont method
This method permanently sets the font that is used to output text to the LCD. Text that has already been
output is not modified. Arial 20 pt (Sigma and Zeta models) or 40 pt (Omega, Gamma, Delta and Alpha
models) is set when DeviceOpen() is called.

Parameter Values I/O Description

Guide_SIGAPI_20210108_ENG 104

BSTR bstrName

LPCWSTR szName

!=
NULL

I Full name of the font, which must be installed on the
PC

LONG nSize 12 -
200

I Font size

LONG nOptions Bitmask containing one or more hexadecimal values from the
following list:
0x01 I Bold
0x02 I Underline
0x04 I Italic

Font font

ByVal font As
Font

!=
NULL

I Font; must be installed on the PC

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.45.1 STPadCapt.ocx
Available from Version 8.0.1 onwards. The status described is available from Version 8.3.1 onwards.
LONG DisplaySetFont(BSTR bstrName, LONG nSize, LONG nOptions)

7.45.1.1 Implementation in C#
int nResult = axSTPadCapt1.DisplaySetFont("Arial", 20, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.45.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.DisplaySetFont("Arial", 20,
0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.45.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplaySetFont(LPCWSTR szName, LONG nSize, LONG nOptions)
The following values defined in the header file can be used for the nOptions parameter:
#define STPAD_FONT_NORMAL 0x00
#define STPAD_FONT_BOLD 0x01
#define STPAD_FONT_UNDERLINE 0x02
#define STPAD_FONT_ITALIC 0x04

7.45.2.1 Implementation in C++
LONG nRc = STDisplaySetFont(L"Arial", 20, STPAD_FONT_NORMAL);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.45.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void DisplaySetFont(System.Drawing.Font font)

Sub DisplaySetFont(ByVal font As System.Drawing.Font)

Guide_SIGAPI_20210108_ENG 105

7.45.3.1 Implementation in C#
try
{
 stPad.DisplaySetFont(new Font("Arial", 20,
FontStyle.Regular));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.45.3.2 Implementation in Visual Basic
Try
 STPad.DisplaySetFont(New Font("Arial", 20, FontStyle.Regular))
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplaySetFontColor method
This method permanently sets the colour in which the text is displayed on the LCD. Text that has already
been output is not modified. The given values will be ignored, if a pad without a colour LCD is used. The
colour black is set when the component is initialised.

Parameter Values I/O Description
OLE_COLOR clrFont

COLORREF clrFont

Color fontColor

ByVal fontColor
As Color

>= 0 I Text colour

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.46.1 STPadCapt.ocx
Available from Version 8.0.11 onwards.
LONG DisplaySetFontColor(OLE_COLOR clrFont)

7.46.1.1 Implementation in C#
int nResult = axSTPadCapt1.DisplaySetFontColor
((uint)ColorTranslator.ToOle(Color.FromArgb(238, 121, 0)));
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.46.1.2 Implementation in Visual Basic
Dim nResult As Integer
nResult = AxSTPadCapt1.DisplaySetFontColor(RGB(238, 121, 0))
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.46.2 STPadLib.dll
Available from Version 8.0.19 onwards.

Guide_SIGAPI_20210108_ENG 106

LONG STDisplaySetFontColor(COLORREF clrFont)

7.46.2.1 Implementation in C++
LONG nRc = STDisplaySetFontColor(RGB(238, 121, 0));
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.46.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void DisplaySetFontColor(System.Drawing.Color fontColor)

Sub DisplaySetFontColor(ByVal fontColor As System.Drawing.Color)

7.46.3.1 Implementation in C#
try
{
 stPad.DisplaySetFontColor(Color.FromArgb(238, 121, 0));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.46.3.2 Implementation in Visual Basic
Try
 STPad.DisplaySetFontColor(Color.FromArgb(238, 121, 0))
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplaySetTarget method
This method defines the device memory that is used by the following methods and properties:
DisplayEraseRect(), DisplaySetText(), DisplaySetTextInRect(),
DisplaySetImage(), DisplaySetImageFromFile(), DisplaySetImageFromStore(),
DisplaySetScrollPos(), DisplayGetScrollPos(), DisplayTargetWidth and
DisplayTargetHeight. The set memory remains valid until the next call of this method or of
DeviceClose(). Contents stored in a non-visible memory can be displayed with the
DisplaySetImageFromStore() method. For more details, see section 7.
After the calling of DeviceOpen(), the methods specified above are all executed directly on the LCD
(foreground memory) as long as DisplaySetTarget() is not called.

Guide_SIGAPI_20210108_ENG 107

Parameter Values I/O Description
LONG nTarget

DisplayTarget
target

ByVal target As
DisplayTarget

-2 I A permanent memory that can hold an image of the
same width and double the height of the display is
reserved inside the device; the memory can be used
for writing from now on; if there is no permanent
memory available, the return value will be 1 (see
below); the value -2 is handled as -1 for the Gamma,
Delta and Alpha models (see there for details)

-1 I A permanent memory that can hold an image in the
size of the display (Omega, Gamma and Delta
models) or up to a size of 2048 x 2048 pixels (Alpha
model) is reserved inside the device; the memory
can be used for writing from now on; if there is no
permanent memory available, the return value will
be 1 (see below)

0 I All content is displayed directly on the LCD and
stored in the foreground memory; the content is lost
if the device is switched off or if DisplayErase()
or DeviceClose() is called

1 I All content is written to the non-visible background
memory; the background memory is used internally
during the signature process, so content is no longer
available after SignatureStart() has been
called; the content is also lost if the device is
switched off or if DisplayErase()or
DeviceClose() is called.

2 I All content is written to the overlay memory; it is
visible immediately if an overlay rectangle has
already been defined; the content is lost if the
device is switched off or if DisplayErase() or
DeviceClose() is called; this value can only be
used for the Sigma and Zeta models

1000 I A virtual memory is used in the API;
RSACreateDisplayHash() can then be called
in order to transfer the content of the memory to
the signature device in an optimal manner

other I Enables direct access to a permanent storage; The
storage must be reserved before it can be used (see
above for value -1 and -2)

Return value Values Description
LONG

DisplayTarget

>= 0 ID of the store which is now selected; all the above referred
methods will now be applied to this store; this ID can be
used when calling this method again to specifically address
this store

< 0 Error (not STPadLibNet.dll)

7.47.1 STPadCapt.ocx
Available from Version 8.0.11 onwards. The status described is available from Version 8.1.0 onwards.
LONG DisplaySetTarget(LONG nTarget)

Guide_SIGAPI_20210108_ENG 108

7.47.1.1 Implementation in C#
int nStoreId = axSTPadCapt1.DisplaySetTarget(-1);
if (nStoreId < 0)
 MessageBox.Show(String.Format("Error {0}", nStoreId);

7.47.1.2 Implementation in Visual Basic
Dim nStoreId As Integer = AxSTPadCapt1.DisplaySetTarget(-1)
If nStoreId < 0 Then
 MsgBox("Error " & CStr(nStoreId))
End If

7.47.2 STPadLib.dll
Available from Version 8.0.19 onwards. The described state is available as of Version 8.1.0.
LONG STDisplaySetTarget(LONG nTarget)
The following values defined in the header file can be used for the nTarget parameter:
#define STPAD_TARGET_LARGESTORE -2
#define STPAD_TARGET_STANDARDSTORE -1
#define STPAD_TARGET_FOREGROUND 0
#define STPAD_TARGET_BACKGROUND 1
#define STPAD_TARGET_OVERLAY 2
#define STPAD_TARGET_DISPLAYHASH 1000

7.47.2.1 Implementation in C++
LONG nStoreId = STDisplaySetTarget(STPAD_TARGET_STANDARDSTORE);
if (nStoreId < 0)
 wprintf(L"Error %d", nStoreId);

7.47.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The described state is available as of Version 8.1.0.
signotec.STPadLibNet.DisplayTarget
DisplaySetTarget(signotec.STPadLibNet.DisplayTarget target)

Function DisplaySetTarget(ByVal target As
signotec.STPadLibNet.DisplayTarget) As
signotec.STPadLibNet.DisplayTarget
The DisplayTarget enumeration is defined as follows:
NewLargeStore = -2,
NewStandardStore = -1,
ForegroundBuffer = 0,
BackgroundBuffer = 1,
OverlayBuffer = 2,
Reserved1 = 3,
Reserved2 = 4,
Reserved3 = 5,
Reserved4 = 6,
Reserved5 = 7,
Reserved6 = 8,
Reserved7 = 9,
Reserved8 = 10,
Reserved9 = 11,
Reserved10 = 12,
Reserved11 = 13,
DisplayHashBuffer = 1000

Guide_SIGAPI_20210108_ENG 109

7.47.3.1 Implementation in C#
try
{
 DisplayTarget nStoreId = DisplayTarget.NewStandardStore;
 nStoreId = stPad.DisplaySetTarget(nStoreId);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.47.3.2 Implementation in Visual Basic
Try
 Dim nStoreId As DisplayTarget = DisplayTarget.NewStandardStore
 nStoreId = STPad.DisplaySetTarget(nStoreId)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplaySetText method
This method can be used to write any text to the memory defined with the DisplaySetTarget()
method. The rectangle enclosing the text overlays existing information in the memory. The text is also
displayed in the control element if the output is made on the display and if the
ControlMirrorDisplay property is set to 2. The text can also appear outside of the display and it is
not wrapped unless it already contains breaks. Arial 20 pt (Sigma and Zeta models) or 40 pt (Omega,
Gamma, Delta and Alpha models) is used, unless another font has been set using
DisplaySetFont(). The colour of the text will be black unless another colour has been set using
DisplaySetFontColor().

Parameter Values I/O Description
LONG nXPos

int xPos

ByVal xPos As
Integer

all I X coordinate of the starting point; 0 is on the far left
of the display; DisplayWidth holds the point on
the far right of the display

LONG nYPos

int yPos

ByVal yPos As
Integer

all I Y coordinate of the starting point; 0 is at the top of
the display; DisplayHeight holds the point at
the very bottom of the display

LONG nAlignment

ALIGN nAlignment

TextAlignment
alignment

ByVal alignment
As TextAlignment

0 I Text is aligned to the right of the starting point
1 I Text is centred horizontally at the starting point
2 I Text is aligned to the left of the starting point

BSTR bstrText

LPCWSTR szText

string text

ByVal text As
String

!=
NULL

I Text to be output

Return value Values Description

Guide_SIGAPI_20210108_ENG 110

LONG

int

Integer

>= 0 Width of the rectangle enclosing the text
< 0 Error (not STPadLibNet.dll)

7.48.1 STPadCapt.ocx
Available from Version 8.0.1 onwards. The status described is available from Version 8.3.1 onwards.
LONG DisplaySetText(LONG nXPos, LONG nYPos, LONG nAlignment, BSTR
bstrText)

7.48.1.1 Implementation in C#
int nResult = axSTPadCapt1.DisplaySetText(50, 20, 0, "Text");
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.48.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.DisplaySetText(50, 20, 0,
"Text")
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.48.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplaySetText(LONG nXPos, LONG nYPos, ALIGN nAlignment, LPCWSTR
szText)
The ALIGN enumeration is defined as follows:
kLeft = 0,
kCenter = 1,
kRight = 2,
kLeftCenteredVertically = 3,
kCenterCenteredVertically = 4,
kRightCenteredVertically = 5

7.48.2.1 Implementation in C++
LONG nRc = STDisplaySetText(50, 20, kLeft, L"Text");
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.48.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
int DisplaySetText(int xPos, int yPos,
signotec.STPadLibNet.TextAlignment alignment, string text)

Function DisplaySetText(ByVal xPos As Integer, ByVal yPos As Integer,
ByVal alignment As signotec.STPadLibNet.TextAlignment, ByVal text As
String) As Integer
The TextAlignment enumeration is defined as follows:
Left = 0,
Center = 1,
Right = 2,
LeftCenteredVertically = 3,
CenterCenteredVertically = 4,
RightCenteredVertically = 5

Guide_SIGAPI_20210108_ENG 111

7.48.3.1 Implementation in C#
try
{
 stPad.DisplaySetText(50, 20, TextAlignment.Left, "Text");
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.48.3.2 Implementation in Visual Basic
Try
 STPad.DisplaySetText(50, 20, TextAlignment.Left, "Text")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplaySetTextInRect method
This method can be used to write any text to the memory defined with the DisplaySetTarget()
method. The specified rectangle overlays existing information in the memory. The text is also displayed
in the control element if the output is made on the display and if the ControlMirrorDisplay
property is set to 2. The text is placed in the rectangle and can optionally be wrapped automatically. No
check is made regarding whether the rectangle is within the display. Arial 20 pt (Sigma and Zeta models)
or 40 pt (Omega, Gamma, Delta and Alpha models) is used, unless another font has been set using
DisplaySetFont(). If the text is too long, the font size is automatically reduced to a minimum of 12
pt (see also options parameter). The colour of the text will be black unless another colour has been set
using DisplaySetFontColor().

Parameter Values I/O Description
LONG nLeft

int left

ByVal left As
Integer

all I Left boundary; 0 is on the far left of the display

LONG nTop

int top

ByVal top As
Integer

all I Upper boundary; 0 is at the top of the display

LONG nWidth

int width

ByVal width As
Integer

> 0 I Width; DisplayWidth holds the width of the LCD
used

0 I Right boundary is automatically set to the maximum
value (right margin of the LCD)

LONG nHeight

int height

ByVal height As
Integer

> 0 I Height; DisplayHeight holds the height of the
LCD used

0 I Lower boundary is automatically set to the
maximum value (lower margin of the LCD)

LONG nAlignment

ALIGN nAlignment

TextAlignment
alignment

ByVal alignment
As TextAlignment

0 I Text is left-aligned and wrapped automatically
1 I Text is centred and wrapped automatically
2 I Text is right-aligned and wrapped automatically
3 I Text is left-aligned and centred vertically in the

rectangle with no wrapping (breaks are ignored)
4 I Text is centred vertically and horizontally in the

rectangle with no wrapping (breaks are ignored);
this setting is ideal for button text

5 I Text is right-aligned and centred vertically in the
rectangle with no wrapping (breaks are ignored)

6 I Text is left-aligned and not wrapped automatically
(breaks are retained)

7 I Text is centred and not wrapped automatically
(breaks are retained)

8 I Text is right-aligned and not wrapped automatically
(breaks are retained)

BSTR bstrText

LPCWSTR szText

string text

ByVal text As
String

!=
NULL

I Text to be output

VARIANT nOptions

LONG nOptions

TextFlag options

ByVal options As
TextFlag

Bitmask containing one or more hexadecimal values from the
following list (optional):
0x01 I Instead of the font size, the height of the text block

in pixels is returned; if the text does not fit in the
given rectangle, it is not output, and the height that
is necessary to output the text in the desired font
size is returned; an error is returned if the longest
word in the text does not fit in a line of the given
rectangle.

Guide_SIGAPI_20210108_ENG 113

Return value Values Description
LONG

int

Integer

>=0 The font size that is actually used or the height of the text in
pixels (see also options parameter)

< 0 Error (not STPadLibNet.dll)

7.49.1 STPadCapt.ocx
Available from Version 8.0.1 onwards. The status described is available from Version 8.4.1.9.
LONG DisplaySetTextInRect(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight, LONG nAlignment, BSTR bstrText, [optional]VARIANT nOptions)

7.49.1.1 Implementation in C#
int nResult = axSTPadCapt1.DisplaySetTextInRect(0, 0, 20, 40, 4,
"Text");
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.49.1.2 Implementation in Visual Basic
Dim nResult As Integer
nResult =AxSTPadCapt1.DisplaySetTextInRect(0, 0, 20, 40, 4,
"Text")
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.49.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.9.
LONG STDisplaySetTextInRect(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight, ALIGN nAlignment, LPCWSTR szText, LONG nOptions=0)

The ALIGN enumeration is defined as follows:
kLeft = 0,
kCenter = 1,
kRight = 2,
kLeftCenteredVertically = 3,
kCenterCenteredVertically = 4,
kRightCenteredVertically = 5,
kLeftNoWrap = 6,
kCenterNoWrap = 7,
kRightNoWrap = 8
The following values defined in the header file can be used for the nOptions parameter:
#define STPAD_TEXT_NORESIZE 0x01

7.49.2.1 Implementation in C++
LONG nRc = STDisplaySetTextInRect(0, 0, 20, 40, kLeft, L"Text");
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.49.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.9.

Guide_SIGAPI_20210108_ENG 114

int DisplaySetTextInRect(int left, int top, int width, int height,
signotec.STPadLibNet.TextAlignment alignment, string text)

int DisplaySetTextInRect(int left, int top, int width, int height,
signotec.STPadLibNet.TextAlignment alignment, string text,
signotec.STPadLibNet.TextFlag options)

Function DisplaySetTextInRect(ByVal left As Integer, ByVal top As
Integer, ByVal width As Integer, ByVal height As Integer, ByVal
alignment As signotec.STPadLibNet.TextAlignment, ByVal text As String)
As Integer

Function DisplaySetTextInRect(ByVal left As Integer, ByVal top As
Integer, ByVal width As Integer, ByVal height As Integer, ByVal
alignment As signotec.STPadLibNet.TextAlignment, ByVal text As String,
ByVal options As signotec.STPadLibNet.TextFlag) As Integer
The TextAlignment enumeration is defined as follows:
Left = 0,
Center = 1,
Right = 2,
LeftCenteredVertically = 3,
CenterCenteredVertically = 4,
RightCenteredVertically = 5,
LeftNoWrap = 6,
CenterNoWrap = 7,
RightNoWrap = 8
The TextFlag enumeration is defined as follows:
None = 0x00,
NoResize = 0x01

7.49.3.1 Implementation in C#
try
{
 stPad.DisplaySetTextInRect(0, 0, 20, 40, TextAlignment.Left,
"Text");
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.49.3.2 Implementation in Visual Basic
Try
 STPad.DisplaySetTextInRect(0, 0, 20, 40, TextAlignment.Left,
"Text")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplaySetImage / DisplaySetImageFromFile method
This method can be used to write an image to the memory defined with the DisplaySetTarget()
method. Although the colour depth is automatically adjusted to the connected LCD, it is still advisable
to correctly generate the image beforehand (for example, a 1-bit monochrome image is required for the
Sigma and Zeta models). If there is an existing Alpha channel, it is ignored. The transfer time for the
Omega, Gamma, Delta and Alpha models depends on the image material; the best pictures have few
colours, so they can be compressed well. The image overlays the existing information in the memory

Guide_SIGAPI_20210108_ENG 115

and any signature that is present is completely erased. The text is also displayed in the control element if
the output is made on the display and if the ControlMirrorDisplay property is set to 2. The image
may also be positioned outside of the display.

Parameter Values I/O Description
LONG nXPos

int xPos

ByVal xPos As
Integer

all I X coordinate of the point from which the bitmap is
output to the right; 0 is on the far left of the display;
DisplayWidth holds the point on the far right of
the display

LONG nYPos

int yPos

ByVal yPos As
Integer

all I Y coordinate of the point from which the bitmap is
output downwards; 0 is at the top of the display;
DisplayHeight holds the point at the very
bottom of the display

LONG nImageHandle

HBITMAP hBitmap

Bitmap bitmap

ByVal bitmap As
Bitmap

!=
NULL

I HBITMAP or System.Drawing.Bitmap to be
output

BSTR bstrPath

LPCWSTR szPath

string path

ByVal path As
String

!=
NULL

I Full path or URL of the image; BMP, GIF, JPEG, PNG &
TIFF can be used as file formats

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.50.1 STPadCapt.ocx
Available from Version 8.0.1 onwards. The status described is available from Version 8.3.1 onwards.
LONG DisplaySetImage(LONG nXPos, LONG nYPos, LONG nImageHandle)

LONG DisplaySetImageFromFile(LONG nXPos, LONG nYPos, BSTR bstrPath)

7.50.1.1 Implementation in C#
Work in the memory:
Bitmap bitmap = (Bitmap)Bitmap.FromFile(@"C:\Image.bmp");
IntPtr hBitmap = bitmap.GetHbitmap();
int nResult = axSTPadCapt1.DisplaySetImage(0, 0, hBitmap);
DeleteObject(hBitmap);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

Work with files:
int nResult = axSTPadCapt1.DisplaySetImageFromFile(0, 0,
@"C:\Image.bmp");
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

Guide_SIGAPI_20210108_ENG 116

7.50.1.2 Implementation in Visual Basic
Work in the memory:
Dim bitmap As Bitmap = bitmap.FromFile("C:\Image.bmp")
Dim hBitmap As IntPtr = bitmap.GetHbitmap
Dim nResult As Integer = AxSTPadCapt1.DisplaySetImage(0, 0,
hBitmap)
DeleteObject(hBitmap)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

Work with files:
Dim nResult As Integer
nResult = AxSTPadCapt1.DisplaySetImageFromFile(0, 0,
"C:\Image.bmp")
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.50.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplaySetImage(LONG nXPos, LONG nYPos, HBITMAP hBitmap)

LONG STDisplaySetImageFromFile(LONG nXPos, LONG nYPos, LPCWSTR szPath)

7.50.2.1 Implementation in C++
Work in the memory:
HBITMAP hBm = (HBITMAP)LoadImage(0, L"C:\\Image.bmp",
IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE | LR_CREATEDIBSECTION);
LONG nRc = STDisplaySetImage(0, 0, hBm);
DeleteObject(hBm);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

Work with files:
LONG nRc = STDisplaySetImageFromFile(0, 0, L"C:\\Image.bmp");
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.50.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void DisplaySetImage(int xPos, int yPos, System.Drawing.Bitmap bitmap)

void DisplaySetImageFromFile(int xPos, int yPos, string path)

Sub DisplaySetImage(ByVal xPos As Integer, ByVal yPos As Integer, ByVal
bitmap As System.Drawing.Bitmap)

Sub DisplaySetImageFromFile(ByVal xPos As Integer, ByVal yPos As
Integer, ByVal path As String)

Guide_SIGAPI_20210108_ENG 117

7.50.3.1 Implementation in C#
Work in the memory:
try
{
 Bitmap bitmap = (Bitmap)Bitmap.FromFile(@"C:\Image.bmp");
 stPad.DisplaySetImage(0, 0, bitmap);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Work with files:
try
{
 stPad.DisplaySetImageFromFile(0, 0, @"C:\Image.bmp");
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.50.3.2 Implementation in Visual Basic
Work in the memory:
Try
 Dim bitmap As Bitmap = Bitmap.FromFile("C:\Image.bmp")
 STPad.DisplaySetImage(0, 0, bitmap)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Work with files:
Try
 STPad.DisplaySetImageFromFile(0, 0, "C:\Image.bmp")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplaySetPDF method
This method can be used to write a page of a PDF document or an excerpt thereof to the memory
defined with the DisplaySetTarget() method. The image overlays the existing information in the
memory and any signature that is present is completely erased. The text is also displayed in the control
element if the output is made on the display and if the ControlMirrorDisplay property is set to 2.
The image may also be positioned outside of the display.
Please also note the PDFLoad() and PDFSelectRect() methods.

Parameter Values I/O Description
LONG nXPos

int xPos

ByVal xPos As
Integer

all I X coordinate of the point from which the bitmap is
output to the right; 0 is on the far left of the display;
DisplayWidth holds the point on the far right of
the display

LONG nYPos

int yPos

ByVal yPos As
Integer

all I Y coordinate of the point from which the bitmap is
output downwards; 0 is at the top of the display;
DisplayHeight holds the point at the very
bottom of the display

LONG nPage

int page

ByVal page As
Integer

> 0 I Number of the page to be output (starting at 1)

DOUBLE dScale

double scale

ByVal scale As
Double

> 0 I Page is scaled; a value of 1 produces a display in
original size

LONG nOptions

PdfFlag options

ByVal options As
PdfFlag

Bitmask containing one or more hexadecimal values from the
following list:
0x01 I The image transferred to the signature device is

stored in the main memory of the PC and therefore
does not have to be rendered again for repeated
display.

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.51.1 STPadCapt.ocx
Available from Version 8.1.4 onwards.
LONG DisplaySetPDF(LONG nXPos, LONG nYPos, LONG nPage, DOUBLE dScale,
LONG nOptions)

7.51.1.1 Implementation in C#
int nResult = axSTPadCapt1.DisplaySetPDF(0, 0, 1, 1.0, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.51.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.DisplaySetPDF(0, 0, 1, 1R,
0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.51.2 STPadLib.dll
Available from Version 8.1.4 onwards.
LONG STDisplaySetPDF(LONG nXPos, LONG nYPos, LONG nPage, DOUBLE dScale,
LONG nOptions)
The following values defined in the header file can be used for the nOptions parameter:

Guide_SIGAPI_20210108_ENG 119

#define STPAD_PDF_CACHE 0x01

7.51.2.1 Implementation in C++
LONG nRc = STDisplaySetPDF(0, 0, 1, 1., 0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.51.3 STPadLibNet.dll
Available from Version 8.1.4 onwards.
void DisplaySetPDF(int xPos, int yPos, int page, double scale, PdfFlag
options)

Sub DisplaySetPDF(ByVal xPos As Integer, ByVal yPos As Integer, ByVal
page As Integer, ByVal scale As Double, ByVal options As PdfFlag)
The PdfFlag enumeration is defined as follows:
None = 0x00,
Cache = 0x01

7.51.3.1 Implementation in C#
try
{
 stPad.DisplaySetPDF(0, 0, 1, 1., PdfFlag.None);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.51.3.2 Implementation in Visual Basic
Try
 STPad.DisplaySetPDF(0, 0, 1, 1R, PdfFlag.None)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplaySetImageFromStore method
This method allows an image that has been stored in a device memory to be written to the memory
defined by DisplaySetTarget(). The content to copy will overlay the content which is currently
stored in the target storage. For more details, see section 7.
If the memory defined by nStoreId was not reserved beforehand by calling DisplaySetTarget(),
the content is copied as desired; however, it is not available within the component for display in the
control element or for storing with the DisplaySaveImage…() or SignatureSave…() method.
To differentiate this case from a call with a reserved nStoreId, nStoreId is returned instead of 0.
The scroll position of the source memory will be assigned to the destination memory, if both have the
same size, else it will be set to 0 / 0.
The image is also displayed in the control element if the output is made to the display and if the
ControlMirrorDisplay property is set to 2.

Parameter Values I/O Description
LONG nStoreId

DisplayTarget
storeId

ByVal storeId As
DisplayTarget

>= 0 I ID of the memory from which the image is to be
read; the ID is the value returned by
DisplaySetTarget()

Return value Values Description
LONG

int

Integer

> 2 The memory defined by nStoreId has not been reserved
beforehand; the content was successfully copied, but is not
available within the component; the returned value is
identical to the value of nStoreId

0 Method was executed successfully
< 0 Error (not STPadLibNet.dll)

7.52.1 STPadCapt.ocx
Available from Version 8.0.11 onwards. The described state is available as of Version 8.0.19.
LONG DisplaySetImageFromStore(LONG nStoreId)

7.52.1.1 Implementation in C#
int nReturn = axSTPadCapt1.DisplaySetImageFromStore(1);
if (nReturn < 0)
 MessageBox.Show(String.Format("Error {0}", nReturn);

7.52.1.2 Implementation in Visual Basic
Dim nReturn As Integer = AxSTPadCapt1.DisplaySetImageFromStore(1)
If nReturn < 0 Then
 MsgBox("Error " & CStr(nReturn))
End If

7.52.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplaySetImageFromStore(LONG nStoreId)
The following values defined in the header file or the ID of a reserved, non-volatile memory can be used
for the nStoreId parameter:
#define STPAD_TARGET_FOREGROUND 0
#define STPAD_TARGET_BACKGROUND 1

7.52.2.1 Implementation in C++
LONG nRc = STDisplaySetImageFromStore(STPAD_TARGET_BACKGROUND);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.52.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
int DisplaySetImageFromStore(signotec.STPadLibNet.DisplayTarget storeId)

Function DisplaySetImageFromStore(ByVal storeId As
signotec.STPadLibNet.DisplayTarget) As Integer
The DisplayTarget enumeration is defined as follows:

Guide_SIGAPI_20210108_ENG 121

ForegroundBuffer = 0,
BackgroundBuffer = 1,
OverlayBuffer = 2,
Reserved1 = 3,
Reserved2 = 4,
Reserved3 = 5,
Reserved4 = 6,
Reserved5 = 7,
Reserved6 = 8,
Reserved7 = 9,
Reserved8 = 10,
Reserved9 = 11,
Reserved10 = 12,
Reserved11 = 13

7.52.3.1 Implementation in C#
try
{

stPad.DisplaySetImageFromStore(DisplayTarget.BackgroundBuffer);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.52.3.2 Implementation in Visual Basic
Try

STPad.DisplaySetImageFromStore(DisplayTarget.BackgroundBuffer);
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplaySetOverlayRect method
This method overlays a rectangular section of the overlay memory on the content of the foreground
memory. The foreground memory is covered within this rectangle until it is removed again or until
DisplayErase(), SignatureConfirm() or SignatureCancel() is called. This functionality is
ideal for a toolbar that displays hotspots, for example, to scroll.
If the storage defined with DisplaySetTarget() is not the foreground memory, the rectangle is not
set until DisplaySetImageFromStore() (with the foreground memory as the destination) is called
to synchronize the display.
The parameters must be multiples of eight when using Omega (with firmware 1.x) and Alpha models
and are rounded if necessary.
This method cannot be called when a both a standard hotpot lying outside of the given rectangle and a
scroll hotspot has been defined previously.
This method only works with the Omega, Gamma, Delta and Alpha models!

Parameter Values I/O Description
LONG nLeft

int left

ByVal left As
Integer

>= 0 I Left boundary; 0 is on the far left of the display

LONG nTop

int top

ByVal top As
Integer

>= 0 I Upper boundary; 0 is at the top of the display

LONG nWidth

int width

ByVal width As
Integer

>= 8 I Width; DisplayWidth holds the width of the LCD
used

0 I The overlay rectangle is removed; the complete
contents of the foreground memory will be visible
again

LONG nHeight

int height

ByVal height As
Integer

>= 8 I Height; DisplayHeight holds the height of the
LCD used

0 I The overlay rectangle is removed; the complete
contents of the foreground memory will be visible
again

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.53.1 STPadCapt.ocx
Available from Version 8.0.17 onwards. The status described is available from Version 8.4.0 onwards.
LONG DisplaySetOverlayRect(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight)

7.53.1.1 Implementation in C#
int nReturn = axSTPadCapt1.DisplaySetOverlayRect(0, 400, 640, 80);
if (nReturn < 0)
 MessageBox.Show(String.Format("Error {0}", nReturn);

7.53.1.2 Implementation in Visual Basic
Dim nReturn As Integer
nReturn = AxSTPadCapt1.DisplaySetOverlayRect(0, 400, 640, 80)
If nReturn < 0 Then
 MsgBox("Error " & CStr(nReturn))
End If

7.53.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.0 onwards.
LONG STDisplaySetOverlayRect(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight)

7.53.2.1 Implementation in C++
LONG nRc = STDisplaySetOverlayRect(0, 400, 640, 80);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

Guide_SIGAPI_20210108_ENG 123

7.53.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.0 onwards.
void DisplaySetOverlayRect(int left, int top, int width, int height)

Sub DisplaySetOverlayRect(ByVal left As Integer, ByVal top As Integer,
ByVal width As Integer, ByVal height As Integer)

7.53.3.1 Implementation in C#
try
{
 stPad.DisplaySetOverlayRect(0, 400, 640, 80);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.53.3.2 Implementation in Visual Basic
Try
 STPad.DisplaySetOverlayRect(0, 400, 640, 80);
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplaySetScrollPos method
This method defines the X/Y position where the contents of the storage defined with
DisplaySetTarget() will be displayed. This method only works for image memories with a size
larger than the display size. Please refer to the descriptions of the properties DisplayTargetWidth
and DisplayTargetHeight.

Parameter Values I/O Description
LONG nXPos

int xPos

ByVal xPos As
Integer

>= 0 I Horizontal offset of the memory contents to the left,
in pixels; while the maximum possible value is
calculated from DisplayTargetWidth -
DisplayWidth, it is possible to impose limits on
this value by calling the
SensorSetScrollArea() method.

LONG nYPos

int yPos

ByVal yPos As
Integer

>= 0 I Vertical offset of the memory contents to the top, in
pixels; the maximum possible value is calculated
from DisplayTargetHeight -
DisplayHeight, it is possible to impose limits on
this value by calling the
SensorSetScrollArea() method.

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.54.1 STPadCapt.ocx
Available from Version 8.0.17 onwards. The status described is available from Version 8.4.1.5.
LONG DisplaySetScrollPos(LONG nXPos, LONG nYPos)

7.54.1.1 Implementation in C#
int nReturn = axSTPadCapt1.DisplaySetScrollPos(0, 100);

Guide_SIGAPI_20210108_ENG 124

if (nReturn < 0)
 MessageBox.Show(String.Format("Error {0}", nReturn);

7.54.1.2 Implementation in Visual Basic
Dim nReturn As Integer = AxSTPadCapt1.DisplaySetScrollPos(0, 100)
If nReturn < 0 Then
 MsgBox("Error " & CStr(nReturn))
End If

7.54.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.5.
LONG STDisplaySetScrollPos(LONG nXPos, LONG nYPos)

7.54.2.1 Implementation in C++
LONG nRc = STDisplaySetScrollPos(0, 100);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.54.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.5.
void DisplaySetScrollPos(int xPos, int yPos)

Sub DisplaySetScrollPos(ByVal xPos As Integer, ByVal yPos As Integer)

7.54.3.1 Implementation in C#
try
{
 stPad.DisplaySetScrollPos(0, 100);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.54.3.2 Implementation in Visual Basic
Try
 STPad.DisplaySetScrollPos(0, 100)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplayGetScrollPos method
This method returns the X/Y position where the content of the memory defined using the
DisplaySetTarget() method are output on the screen.

Parameter Values I/O Description
LONG* pnXPos

out int xPos

ByRef xPos As
Integer

!=
NULL

O Horizontal offset of the memory contents to the left,
in pixels

LONG* pnYPos

out int yPos

ByRef yPos As
Integer

!=
NULL

O Vertical offset of the memory contents to the top, in
pixels

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.55.1 STPadCapt.ocx
Available from Version 8.0.17 onwards.
LONG DisplayGetScrollPos(LONG* pnXPos, LONG* pnYPos)

7.55.1.1 Implementation in C#
int nXPos, nYPos;
int nReturn = axSTPadCapt1.DisplayGetScrollPos(ref nXPos, ref
nYPos);
if (nReturn < 0)
 MessageBox.Show(String.Format("Error {0}", nReturn);
else
 MessageBox.Show(String.Format("Scroll pos: {0} / {1}", nXpos,
nYPos);

7.55.1.2 Implementation in Visual Basic
Dim nXPos, nYPos As Integer
Dim nReturn As Integer = AxSTPadCapt1.DisplayGetScrollPos(nXpos,
nYPos)
If nReturn < 0 Then
 MsgBox("Error " & CStr(nReturn))
Else
 MsgBox("Scroll pos: " & CStr(nXPos) & " / " & CStr(nYPos))
End If

7.55.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplayGetScrollPos(LONG* pnXPos, LONG* pnYPos)

7.55.2.1 Implementation in C++
LONG nXPos, nYPos;
LONG nRc = STDisplayGetScrollPos(&nXPos, &nYPos);
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
 wprintf(L"Scroll pos: %d / %d", nXPos, nYPos);

7.55.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.3.1 onwards.

Guide_SIGAPI_20210108_ENG 126

void DisplayGetScrollPos(out int xPos, out int yPos)

Sub DisplayGetScrollPos(ByRef xPos As Integer, ByRef yPos As Integer)

7.55.3.1 Implementation in C#
try
{
 int nXPos, nYPos;
 stPad.DisplayGetScrollPos(out nXPos, out nYPos);
 MessageBox.Show(String.Format("Scroll pos: {0} / {1}", nXPos,
nYPos));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.55.3.2 Implementation in Visual Basic
Try
 Dim nXPos, nYPos As Integer
 STPad.DisplayGetScrollPos(nXpos, nYPos)
 MsgBox("Scroll pos: " & CStr(nXPos) & " / " & CStr(nYPos))
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplaySaveImageAsStream / DisplaySaveImageAsFile method
This method can be used to retrieve the content of an image memory as image data in the memory or
save it as an image file on the hard drive. Any existing signature will be ignored for saving. The image
has the size and resolution of the screen on the device used and, depending on the option, the size of
the screen or image memory. The colour depth depends on the file type and the device used.

Parameter Values I/O Description
BYTE* pbtImage NULL I The method calculates the image, caches it and

returns the required size of the array in the pnSize
parameter.

other I/O Array (in the required size) in which the cached
image data is written; pnSize must correspond to
the value returned for the previous call; all other
parameters are ignored.

LONG* pnSize > 0 I/O Size of the array (in bytes) in which the image data is
to be written

BSTR bstrPath

LPCWSTR szPath

string path

ByVal path As
String

!=
NULL

I Storage location for the image file as a full path that
includes the file name

LONG nFileType

FILETYPE
nFileType

0 I Use TIFF with CCITT4 compression (b/w image) or
LZW compression (colour image) as the file format
(recommended)

1 I Use PNG file format
2 I Use BMP file format

Guide_SIGAPI_20210108_ENG 127

3 I Use JPEG with a quality setting of 75 as the file
format

4 I Use GIF file format (the resolution will always be 96
ppi)

200 -
204

I Image data is not returned as binary data, but as
Base64 encoded data; otherwise as values 0–4
(STPadCapt.ocx and
DisplaySaveImageAsStream() only)

LONG nOptions

DisplayImageFlag
options

ByVal options As
DisplayImageFlag

Bitmask containing one or more hexadecimal values from the
following list:
0x01 I The whole content of the display will be stored; The

hotspot areas (buttons) stay white in this mode.
0x02 I Instead of the current display content the content of

the whole foreground memory without the overlay
rectangle is saved

0x04 I Instead of the current display content, the content
of the entire memory defined beforehand with
DisplaySetTarget() is saved.

Return value Values Description
VARIANT empty Error

other Image data as array of Bytes or Base64-coded String
LONG 0 Method was executed successfully

< 0 Error
Bitmap !=

NULL
Image as System.Drawing.Bitmap

7.56.1 STPadCapt.ocx
Available from Version 8.0.11 onwards. The status described is available from Version 8.3.2 onwards.
LONG DisplaySaveImageAsFile(BSTR bstrPath, LONG nFileType, LONG
nOptions)

VARIANT DisplaySaveImageAsStream(LONG nFileType, LONG nOptions)

7.56.1.1 Implementation in C#
Work in the memory:
byte[] btImage = (byte[])axSTPadCapt1.DisplaySaveImageAsStream(0,
0);
if (btImage == null)
{
 MessageBox.Show(String.Format("Error"));
 return;
}
MemoryStream memoryStream = new MemoryStream(btImage);
Image image = Image.FromStream(memoryStream);

Work with files:
int nResult = axSTPadCapt1.DisplaySaveImageAsFile(@"C:\Image.tif",
0, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

Guide_SIGAPI_20210108_ENG 128

7.56.1.2 Implementation in Visual Basic
Work in the memory:
Dim btImage As Byte() = AxSTPadCapt1.DisplaySaveImageAsStream(0,
0)
If btImage Is Nothing Then
 MsgBox("Error")
 Exit Sub
End If
Dim memoryStream As MemoryStream = New MemoryStream(btImage)
Dim image As Image = Image.FromStream(memoryStream)

Work with files:
Dim nResult As Integer
nResult = AxSTPadCapt1.DisplaySaveImageAsFile("C:\Image.tif", 0,
0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.56.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.3.2 onwards.
LONG STDisplaySaveImageAsFile(LPCWSTR szPath, FILETYPE nFileType, LONG
nOptions)

LONG STDisplaySaveImageAsStream(BYTE* pbtImage, LONG* pnSize, FILETYPE
nFileType, LONG nOptions)
The FILETYPE enumeration is defined as follows:
kTiff = 0,
kPng = 1,
kBmp = 2,
kJpeg = 3,
kGif = 4
The following values defined in the header file can be used for the nOptions parameter:
#define STPAD_DIMG_HOTSPOTS 0x01
#define STPAD_DIMG_BUFFER 0x02
#define STPAD_DIMG_CURRENTTARGET 0x04

Guide_SIGAPI_20210108_ENG 129

7.56.2.1 Implementation in C++
Work in the memory:
LONG nSize = 0;
LONG nRc = STDisplaySaveImageAsStream(NULL, &nSize, kBmp, 0);
BYTE* pbtImage = NULL;
BITMAP bitmap;
if (nRc == 0)
{
 pbtImage = new BYTE[nSize];
 nRc = STDisplaySaveImageAsStream(pbtImage, &nSize, kBmp, 0);
}
if (nRc == 0)
{
 BITMAPFILEHEADER bmfh = (*(BITMAPFILEHEADER*)pbtImage);
 BITMAPINFO bmi = (*(BITMAPINFO*)(pbtImage +
sizeof(BITMAPFILEHEADER)));
 bitmap.bmType = 0;
 bitmap.bmWidth = bmi.bmiHeader.biWidth;
 bitmap.bmHeight = bmi.bmiHeader.biHeight;
 bitmap.bmPlanes = bmi.bmiHeader.biPlanes;
 bitmap.bmBitsPixel = bmi.bmiHeader.biBitCount;
 bitmap.bmWidthBytes = ((bitmap.bmWidth * bitmap.bmBitsPixel +
31) >> 5) << 2;
 bitmap.bmBits = new BYTE[bitmap.bmHeight *
bitmap.bmWidthBytes];
 memcpy(bitmap.bmBits, pbtImage + bmfh.bfOffBits,
bitmap.bmHeight * bitmap.bmWidthBytes);
 delete [] pbtImage;
}
if (nRc < 0)
 wprintf(L"Error %d", nRc);

Work with files:
LONG nRc = STDisplaySaveImageAsFile(L"C:\\Image.tif", kTiff, 0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.56.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.3.2 onwards.
void DisplaySaveImageAsFile(string path,
System.Drawing.Imaging.ImageFormat fileType,
signotec.STPadLibNet.DisplayImageFlag options)

System.Drawing.Bitmap
DisplaySaveImageAsStream(signotec.STPadLibNet.DisplayImageFlag options)

Sub DisplaySaveImageAsFile(ByVal path As String, ByVal fileType As
System.Drawing.Imaging.ImageFormat, ByVal options As
signotec.STPadLibNet.DisplayImageFlag)

Function DisplaySaveImageAsStream(ByVal options As
signotec.STPadLibNet.DisplayImageFlag) As System.Drawing.Bitmap
The DisplayImageFlag enumeration is defined as follows:
None = 0x00,
ExcludeHotSpots = 0x01,
CompleteBuffer = 0x02,
CurrentTarget = 0x04

Guide_SIGAPI_20210108_ENG 130

7.56.3.1 Implementation in C#
Work in the memory:
Bitmap bitmap;
try
{
 bitmap =
stPad.DisplaySaveImageAsStream(DisplayImageFlag.None);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Work with files:
try
{
 stPad.DisplaySaveImageAsFile(@"C:\Image.tif",
ImageFormat.Tiff, DisplayImageFlag.None);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.56.3.2 Implementation in Visual Basic
Work in the memory:
Dim bitmap As Bitmap
Try
 bitmap = STPad.DisplaySaveImageAsStream(DisplayImageFlag.None)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Work with files:
Try
 STPad.DisplaySaveImageAsFile("C:\Image.tif", ImageFormat.Tiff,
_ DisplayImageFlag.None)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplaySetStandbyImage / DisplaySetStandbyImageFromFile method
This method permanently stores an image in the selected device. The image is automatically displayed
when a connection to the device has not yet been opened (while a connection is being established, for
example). Although the colour depth is automatically adjusted to the connected LCD, it is still advisable
to correctly generate the image beforehand (for example, a 1-bit monochrome image is required for the
Sigma and Zeta models). If there is an existing Alpha channel, it is ignored. If the image is too small, it is
centred. If the image is too large, it is cropped on the right and at the bottom.
The image is only transmitted when the memory management determines that the image is not yet
stored in the device. A slide show configuration is removed by calling this method.

Parameter Values I/O Description

Guide_SIGAPI_20210108_ENG 131

LONG nImageHandle

HBITMAP hBitmap

Bitmap bitmap

ByVal bitmap As
Bitmap

NULL I The stored image is deleted
!=
NULL

I Handle of the image or
System.Drawing.Bitmap to be stored

BSTR bstrPath

LPCWSTR szPath

string path

ByVal path As
String

!=
NULL

I Full path or URL of the image; BMP, GIF, JPEG, PNG &
TIFF can be used as file formats

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.57.1 STPadCapt.ocx
Available from Version 8.0.3 onwards.
LONG DisplaySetStandbyImage(LONG nImageHandle)

LONG DisplaySetStandbyImageFromFile(BSTR bstrPath)

7.57.1.1 Implementation in C#
Work in the memory:
Bitmap bitmap = (Bitmap)Bitmap.FromFile(@"C:\Image.bmp");
IntPtr hBitmap = bitmap.GetHbitmap();
int nResult = axSTPadCapt1.DisplaySetStandbyImage(hBitmap);
DeleteObject(hBitmap);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

Work with files:
int nResult;
nResult =
axSTPadCapt1.DisplaySetStandbyImageFromFile(@"C:\Image.bmp");
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.57.1.2 Implementation in Visual Basic
Work in the memory:
Dim bitmap As Bitmap = Bitmap.FromFile("C:\Image.bmp")
Dim hBitmap As IntPtr = bitmap.GetHbitmap
Dim nResult As Integer =
AxSTPadCapt1.DisplaySetStandbyImage(hBitmap)
DeleteObject(hBitmap)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

Guide_SIGAPI_20210108_ENG 132

Work with files:
Dim nResult As Integer
nResult =
AxSTPadCapt1.DisplaySetStandbyImageFromFile("C:\Image.bmp")
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.57.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplaySetStandbyImage(HBITMAP hBitmap)

LONG STDisplaySetStandbyImageFromFile(LPCWSTR szPath)

7.57.2.1 Implementation in C++
Work in the memory:
HBITMAP hBm = (HBITMAP)LoadImage(0, L"C:\\Image.bmp",
IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE | LR_CREATEDIBSECTION);
LONG nRc = STDisplaySetStandbyImage(hBm);
DeleteObject(hBm);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

Work with files:
LONG nRc = STDisplaySetStandbyImageFromFile(L"C:\\Image.bmp");
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.57.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void DisplaySetStandbyImage(System.Drawing.Bitmap bitmap)

void DisplaySetStandbyImageFromFile(string path)

Sub DisplaySetStandbyImage(ByVal bitmap As System.Drawing.Bitmap)

Sub DisplaySetStandbyImageFromFile(ByVal path As String)

7.57.3.1 Implementation in C#
Work in the memory:
try
{
 Bitmap bitmap = (Bitmap)Bitmap.FromFile(@"C:\Image.bmp");
 stPad.DisplaySetStandbyImage(bitmap);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Guide_SIGAPI_20210108_ENG 133

Work with files:
try
{
 stPad.DisplaySetStandbyImageFromFile(@"C:\Image.bmp");
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.57.3.2 Implementation in Visual Basic
Work in the memory:
Try
 Dim bitmap As Bitmap = Bitmap.FromFile("C:\Image.bmp")
 STPad.DisplaySetStandbyImage(bitmap)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Work with files:
Try
 STPad.DisplaySetStandbyImageFromFile("C:\Image.bmp")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplaySetStandbyImageEx / DisplaySetStandbyImageFromFileEx method
This method permanently stores an image in the selected device. The image is automatically displayed
when a connection to the device has not yet been opened (while a connection is being established, for
example). Unlike DisplaySetStandbyImage() and DisplaySetStandbyImageFromFile(),
the backlight is switched off and the image is removed from the display after a previously specified time
period has expired.
The colour depth of the image is automatically adjusted to suit the connected LCD. Although, it is still
advisable to correctly generate the image beforehand (for example, a 1-bit monochrome image is
required for the Sigma and Zeta models). If there is an existing Alpha channel, it is ignored. If the image
is too small, it is centred. If the image is too large, it is cropped on the right and at the bottom.
The image is only transmitted when the memory management determines that the image is not yet
stored in the device.
A slide show configuration is removed by calling this method.
The time-controlled switching off is not supported by the models Sigma, Omega up to firmware 1.40 or
Alpha. The time value is ignored in these devices.

Parameter Values I/O Description
LONG nImageHandle

HBITMAP hBitmap

Bitmap bitmap

ByVal bitmap As
Bitmap

NULL I The stored image is deleted
!=
NULL

I Handle of the image or
System.Drawing.Bitmap to be stored

Guide_SIGAPI_20210108_ENG 134

BSTR bstrPath

LPCWSTR szPath

string path

ByVal path As
String

!=
NULL

I Full path or URL of the image; BMP, GIF, JPEG, PNG &
TIFF can be used as file formats

LONG nDuration

int duration

ByVal duration As
Integer

0,
100 -
30000
0

I Time in milliseconds that the image is displayed
until the display is switched off; a maximum value of
255000 can be transmitted for the Gamma and
Delta models. If the value is 0, no switching off will
occur.

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.58.1 STPadCapt.ocx
Available from Version 8.0.3 onwards.
LONG DisplaySetStandbyImageEx(LONG nImageHandle, LONG nDuration)

LONG DisplaySetStandbyImageFromFileEx(BSTR bstrPath, LONG nDuration)

7.58.1.1 Implementation in C#
Work in the memory:
Bitmap bitmap = (Bitmap)Bitmap.FromFile(@"C:\Image.bmp");
IntPtr hBitmap = bitmap.GetHbitmap();
int nResult = axSTPadCapt1.DisplaySetStandbyImageEx(hBitmap,
5000);
DeleteObject(hBitmap);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

Work with files:
int nResult;
nResult =
axSTPadCapt1.DisplaySetStandbyImageFromFileEx(@"C:\Image.bmp",
5000);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.58.1.2 Implementation in Visual Basic
Work in the memory:
Dim bitmap As Bitmap = Bitmap.FromFile("C:\Image.bmp")
Dim hBitmap As IntPtr = bitmap.GetHbitmap
Dim nResult As Integer =
AxSTPadCapt1.DisplaySetStandbyImageEx(hBitmap,
5000)
DeleteObject(hBitmap)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

Guide_SIGAPI_20210108_ENG 135

Work with files:
Dim nResult As Integer
nResult =
AxSTPadCapt1.DisplaySetStandbyImageFromFileEx("C:\Image.bmp",
5000)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.58.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplaySetStandbyImageEx(HBITMAP hBitmap, LONG nDuration)

LONG STDisplaySetStandbyImageFromFileEx(LPCWSTR szPath, LONG nDuration)

7.58.2.1 Implementation in C++
Work in the memory:
HBITMAP hBm = (HBITMAP)LoadImage(0, L"C:\\Image.bmp",
IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE | LR_CREATEDIBSECTION);
LONG nRc = STDisplaySetStandbyImageEx(hBm, 5000);
DeleteObject(hBm);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

Work with files:
LONG nRc = STDisplaySetStandbyImageFromFileEx(L"C:\\Image.bmp",
5000);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.58.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void DisplaySetStandbyImageEx(System.Drawing.Bitmap bitmap, int
duration)

void DisplaySetStandbyImageFromFileEx(string path, int duration)

Sub DisplaySetStandbyImageEx(ByVal bitmap As System.Drawing.Bitmap,
ByVal duration As Integer)

Sub DisplaySetStandbyImageFromFileEx(ByVal path As String, ByVal
duration As Integer)

7.58.3.1 Implementation in C#
Work in the memory:
try
{
 Bitmap bitmap = (Bitmap)Bitmap.FromFile(@"C:\Image.bmp");
 stPad.DisplaySetStandbyImageEx(bitmap, 5000);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Guide_SIGAPI_20210108_ENG 136

Work with files:
try
{
 stPad.DisplaySetStandbyImageFromFileEx(@"C:\Image.bmp", 5000);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.58.3.2 Implementation in Visual Basic
Work in the memory:
Try
 Dim bitmap As Bitmap = Bitmap.FromFile("C:\Image.bmp")
 STPad.DisplaySetStandbyImageEx(bitmap, 5000)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Work with files:
Try
 STPad.DisplaySetStandbyImageFromFileEx("C:\Image.bmp", 5000)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 DisplayConfigSlideShow method
With this method, a slide show of permanently stored images can be configured to be played
automatically on the target device, if the device is not in use. A possibly saved standby image is
removed.
This method only works with the Omega, Gamma, Delta and Alpha models. It is necessary to use the
DisplayConfigSlideShowEx() method in order to fully exploit the functionality of the Gamma
and Delta models.

Parameter Values I/O Description
BSTR
bstrSlideList

LPCWSTR
szSlideList

string slideList

ByVal slideList
As String

NULL,
""

I The slide show will be disabled

other I A list of up to 16 (Gamma up to firmware 1.9 and
Delta up to firmware 1.7) or 32 (Omega, Gamma
from firmware 1.10, Delta from firmware 1.8 and
Alpha) IDs of image stores separated by semicolons;
these IDs must be reserved previously by the
DisplaySetTarget() method and must be
filled with text or images; an ID of an image store
can be included multiple times; the ID 35 cannot be
used for a slide show; the slide show will be
displayed in the given order.

LONG nDuration

int duration

ByVal duration As
Integer

100 -
30000
0

I Time in milliseconds that each image is displayed; a
maximum value of 255000 can be passed for the
Gamma and Delta models.

Return value Values Description

Guide_SIGAPI_20210108_ENG 137

LONG

int

Integer

>= 0 Number of images in the slide show
< 0 Error (not STPadLibNet.dll)

7.59.1 STPadCapt.ocx
Available from Version 8.0.11 onwards. The status described is available from Version 8.4.1.10.
LONG DisplayConfigSlideShow(BSTR bstrSlideList, LONG nDuration)

7.59.1.1 Implementation in C#
int nResult = axSTPadCapt1.DisplayConfigSlideShow("5;6;8;5;7",
2000);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.59.1.2 Implementation in Visual Basic
Dim nResult As Integer
nResult = AxSTPadCapt1.DisplayConfigSlideShow("5;6;8;5;7", 2000)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.59.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.10.
LONG STDisplayConfigSlideShow(LPCWSTR szSlideList, LONG nDuration)

7.59.2.1 Implementation in C++
LONG nRc = STDisplayConfigSlideShow(L"5;6;8;5;7", 2000);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.59.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.10.
int DisplayConfigSlideShow(string slideList, int duration)

Function DisplayConfigSlideShow(ByVal slideList As String, ByVal
duration As Integer)

7.59.3.1 Implementation in C#
try
{
 stPad.DisplayConfigSlideShow("5;6;8;5;7", 2000);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.59.3.2 Implementation in Visual Basic
Try
 STPad.DisplayConfigSlideShow("5;6;8;5;7", 2000);
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Guide_SIGAPI_20210108_ENG 138

 DisplayConfigSlideShowEx method
With this method, a slide show of permanently stored images can be configured to be played
automatically on the target device, if the device is not in use. A possibly saved standby image is
removed.
This method only offers the functionality of the DisplayConfigSlideShow() method with the
Omega (up to firmware 1.40) and Alpha models.

Parameter Values I/O Description
BSTR
bstrSlideList

LPCWSTR
szSlideList

string slideList

ByVal slideList
As String

NULL,
""

I The slide show will be disabled

other I A list of up to 16 (Gamma up to firmware 1.9 and
Delta up to firmware 1.7) or 32 (Omega, Gamma
from firmware 1.10, Delta from firmware 1.8 and
Alpha) IDs of image stores separated by semicolons;
these IDs must have been previously reserved
through the DisplaySetTarget() method and
must have been filled with text or images; an ID of
an image store can be included multiple times; the
ID 35 cannot be used for a slide show; the slide show
will be displayed in the given order; a negative
number can also be included when using the
Omega (from firmware 2.0), Gamma and Delta
models, the image from the Store ID that
corresponds to the absolute value of this number
will then only be displayed during the first run of the
slide show; a value of 0 can also be included with the
Omega (from firmware 2.0), Gamma and Delta
models, the slide show will then end at this point
and the backlight will be disabled.

BSTR
bstrDurationList

LPCWSTR
szDurationList

string
durationList

ByVal
durationList As
String

100 -
30000
0

I A list of a maximum of one (Omega up to firmware
1.40 and Alpha) or 16 (Omega from firmware 2.0,
Gamma up to firmware 1.9 and Delta up to firmware
1.7) or 32 (Gamma from firmware 1.10 and Delta
from firmware 1.8) times in milliseconds separated
by semicolon for which each individual image is to
be displayed; if this list contains fewer values than
the list of Store IDs, the last value in the list is used
for all further images; permitted values are all those
from "100" to "255000" for the Gamma and Delta
models and "300000" for all other models.

Return value Values Description
LONG

int

Integer

>= 0 Number of images in the slide show
< 0 Error (not STPadLibNet.dll)

7.60.1 STPadCapt.ocx
Available from Version 8.2.0 onwards. The status described is available from Version 8.4.1.10.
LONG DisplayConfigSlideShowEx(BSTR bstrSlideList, BSTR bstrDurationList)

Guide_SIGAPI_20210108_ENG 139

7.60.1.1 Implementation in C#
int nResult = axSTPadCapt1.DisplayConfigSlideShowEx("-
5;6;8;6;7;0", "5000;1000;2000;1000;2000");
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.60.1.2 Implementation in Visual Basic
Dim nResult As Integer
nResult = AxSTPadCapt1.DisplayConfigSlideShowEx("-5;6;8;6;7;0",
"5000;1000;2000;1000;2000")
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.60.2 STPadLib.dll
Available from Version 8.2.0 onwards. The status described is available from Version 8.4.1.10.
LONG STDisplayConfigSlideShowEx(LPCWSTR szSlideList, LPCWSTR
szDurationList)

7.60.2.1 Implementation in C++
LONG nRc = STDisplayConfigSlideShowEx(L"-5;6;8;6;7;0",
L"5000;1000;2000;1000;2000");
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.60.3 STPadLibNet.dll
Available from Version 8.2.0 onwards. The status described is available from Version 8.4.1.10.
int DisplayConfigSlideShowEx(string slideList, string durationList)

Function DisplayConfigSlideShowEx(ByVal slideList As String, ByVal
durationList As String) As Integer

7.60.3.1 Implementation in C#
try
{
 stPad.DisplayConfigSlideShowEx("-5;6;8;6;7;0",
"5000;1000;2000;1000;2000");
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.60.3.2 Implementation in Visual Basic
Try
 STPad.DisplayConfigSlideShowEx("-5;6;8;6;7;0",
"5000;1000;2000;1000;2000");
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Guide_SIGAPI_20210108_ENG 140

 DisplayGetStandbyId method
This method returns the number of images configured for standby operation, as well as a hexadecimal
character string that identifies the standby image currently set or the slide show currently configured.
Thus it can be checked, for example, whether the current configuration matches the desired one.

Parameter Values I/O Description
BSTR* pbstrId

out string id

ByRef id As
String

!=
NULL

O Unique string the identifies the current
configuration

LPCWSTR szId NULL I The method returns the length of the character
string in the pnStringLength parameter

!=
NULL

I/O Array in which the character string that identifies the
current configuration is written; if the array is too
small, the end characters are cut off

LONG*
pnStringLength

>= 0 I/O Length of the character string incl. terminated 0 or
size of the szId array in bytes

Return value Values Description
LONG

int

Integer

>= 0 Number of reserved permanent stores used for the standby
image or the slide show

< 0 Error

7.61.1 STPadCapt.ocx
Available from Version 8.0.16 onwards. The status described is available from Version 8.2.0 onwards.
LONG DisplayGetStandbyId(BSTR* pbstrId)

7.61.1.1 Implementation in C#
string strId = "";
int nResult = axSTPadCapt1.DisplayGetStandbyId(ref strId);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult));
else if (nResult == 0)
 MessageBox.Show(String.Format("No standby mode configured!"));
else
 MessageBox.Show(String.Format("{0} stores configured, ID is:
{1}", nResult, strId));

7.61.1.2 Implementation in Visual Basic
Dim strId As String = ""
Dim nResult As Integer = AxSTPadCapt1.DisplayGetStandbyId(strId)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
ElseIf nResult = 0 Then
 MsgBox("No standby mode configured!")
Else
 MsgBox(CStr(nResult) & " stores configured, ID is: " & strId)
End If

7.61.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.1.4.
LONG STDisplayGetStandbyId(LPCWSTR szId, LONG* pnStringLength)

Guide_SIGAPI_20210108_ENG 141

7.61.2.1 Implementation in C++
LONG nLen = 0;
LONG nRc = STDisplayGetStandbyId(NULL, &nLen);
if (nRc == 0)
 wprintf(L"No standby mode configured!");
else if (nRc > 0)
{
 WCHAR* szId = new WCHAR[nLen / sizeof(WCHAR)];
 nRc = STDisplayGetStandbyId(szId, &nLen);
 if (nRc > 0)
 wprintf(L"%d stores configured, ID is: %s", nRc, szId);
 delete [] szId;
}
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.61.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.3.1 onwards.
int DisplayGetStandbyId(out string id)

Function DisplayGetStandbyId(ByRef id As String) As Integer

7.61.3.1 Implementation in C#
try
{
 string strId = "";
 int nCount = stPad.DisplayGetStandbyId(out strId);
 if (nCount == 0)
 MessageBox.Show(String.Format("No standby mode
configured!"));
 else
 MessageBox.Show(String.Format("{0} stores configured, ID
is: " + "{1}", nCount, strId));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.61.3.2 Implementation in Visual Basic
Try
 Dim strId As String = ""
 Dim nCount As Integer = STPad.DisplayGetStandbyId(strId)
 If nCount = 0 Then
 MsgBox("No standby mode configured!")
 Else
 MsgBox(CStr(nCount) & " stores configured, ID is: " &
strId)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Guide_SIGAPI_20210108_ENG 142

 DisplaySetBacklight method
This method controls the display backlight. The backlight is always set to the default value when the
device is switched on. A default behaviour for opening and closing can be additionally defined in the
STPad.ini file (see there for details).
With the Sigma model this method only works from firmware 1.10. With the Omega model, it only works
from firmware 1.7. In Omega models with a firmware version that is older than 1.12, the values 1, 2 and 3
all set the default brightness.

Parameter Values I/O Description
LONG nMode

BACKLIGHT nMode

BacklightMode
mode

ByVal mode As
BacklightMode

0 I The backlight is switched off
1 I The backlight is set to the default value
2 I The backlight is set to medium brightness
3 I The backlight is set to maximum brightness

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.62.1 STPadCapt.ocx
Available from Version 8.0.16 onwards. The status described is available from Version 8.3.1 onwards.
LONG DisplaySetBacklight(LONG nMode)

7.62.1.1 Implementation in C#
int nResult = axSTPadCapt1.DisplaySetBacklight(0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.62.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.DisplaySetBacklight(0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.62.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.0.21 onwards.
LONG STDisplaySetBacklight(BACKLIGHT nMode)
The BACKLIGHT enumeration is defined as follows:
kOff = 0,
kOn = 1,
kMedium = 2,
kMaximum = 3

7.62.2.1 Implementation in C++
LONG nRc = STDisplaySetBacklight(kOff);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.62.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.0.21 onwards.

Guide_SIGAPI_20210108_ENG 143

void DisplaySetBacklight(signotec.STPadLibNet.BacklightMode mode)

Sub DisplaySetBacklight(ByVal mode As
signotec.STPadLibNet.BacklightMode)
The BacklightMode enumeration is defined as follows:
Off = 0,
On = 1,
Medium = 2,
Maximum = 3

7.62.3.1 Implementation in C#
try
{
 stPad.DisplaySetBacklight(BacklightMode.Off);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.62.3.2 Implementation in Visual Basic
Try
 STPad.DisplaySetBacklight(BacklightMode.Off)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 ControlSetLogDirectory method
This method allows logging to be controlled in any folder regardless of the settings in the STPad.ini file
(depending on the component, the LogSTPadCapt, LogSTPadLib or LogSTPadLibNet keys). The
component must have write permissions in this folder. Accessing this method always closes the current
log file. If a valid path is transferred, information is immediately written to an existing or new log file in
the specified folder.

Parameter Values I/O Description
BSTR bstrPath

LPCWSTR szPath

string path

ByVal path As
String

NULL I Logging is disabled.
other I Absolute path to an existing folder where the

logging is to take place; this path may contain
environment variables that must be enclosed with %

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.63.1 STPadCapt.ocx
Available from Version 8.0.21.12 onwards. The status described is available from Version 8.4.1.5.
LONG ControlSetLogDirectory(BSTR bstrPath)

7.63.1.1 Implementation in C#
int nResult =
axSTPadCapt1.ControlSetLogDirectory("%USERPROFILE%");
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

Guide_SIGAPI_20210108_ENG 144

7.63.1.2 Implementation in Visual Basic
Dim nResult As Integer
nResult = AxSTPadCapt1.ControlSetLogDirectory("%USERPROFILE%")
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.63.2 STPadLib.dll
Available from Version 8.0.21.12 onwards. The status described is available from Version 8.4.1.5.
LONG STControlSetLogDirectory(LPCWSTR szPath)

7.63.2.1 Implementation in C++
LONG nRc = STControlSetLogDirectory(L"%USERPROFILE%");
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.63.3 STPadLibNet.dll
Available from Version 8.0.21.12 onwards. The status described is available from Version 8.4.1.5.
void ControlSetLogDirectory(string path)

Sub ControlSetLogDirectory(ByVal path As String)

7.63.3.1 Implementation in C#
try
{
 stPad.ControlSetLogDirectory("%USERPROFILE%");
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.63.3.2 Implementation in Visual Basic
Try
 STPad.ControlSetLogDirectory("%USERPROFILE%")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 ControlGetVersion method
This method is deprecated. Please use the ControlVersion property instead.

 ControlErase method
This method erases the captured signature data and the displayed signature as well as all bitmaps and
text in the control element’s window.

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

Guide_SIGAPI_20210108_ENG 145

7.65.1 STPadCapt.ocx
Available from Version 8.0.1 onwards.
LONG ControlErase()

7.65.1.1 Implementation in C#
int nResult = axSTPadCapt1.ControlErase();
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.65.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.ControlErase()
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.65.2 STPadLib.dll
Not available.

7.65.3 STPadLibNet.dll
Available from Version 8.0.21 onwards (only in the STPadLibControl class).
void ControlErase()

Sub ControlErase()

7.65.3.1 Implementation in C#
try
{
 stPad.ControlErase();
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.65.3.2 Implementation in Visual Basic
Try
 STPad.ControlErase()
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 ControlSetHotspotMode method
This method can be used to change the behaviour of a monitored area (hotspot) in the control element
if the ControlMirrorDisplay() property is set to four (interactive). The mode set by
SensorSetHotSpotMode() always takes priority; operating a hotspot deactivated there in the
control element is therefore never possible.
This method has no effect on hotspots that have been added via the SensorAddKeypadHotspot()
method. It is never possible to operate these hotspots in the control element.

Parameter Values I/O Description

Guide_SIGAPI_20210108_ENG 146

LONG nMode

HOTSPOTMODE nMode

HotSpotMode mode

ByVal mode As
HotSpotMode

0 I Deactivates the monitored area
1 I Activates the monitored area
2 I Activates the monitored area but disables the

automatic inverting when the area is clicked

LONG nHotSpotId

int hotSpotId

ByVal hotSpotId
As Integer

>= 0 I ID of the hotspot that is to be changed

Return value Values Description
LONG >= 0 ID of the hotspot that was generated

< 0 Error

7.66.1 STPadCapt.ocx
Available from Version 8.1.2 onwards. The status described is available from Version 8.3.1 onwards.
LONG ControlSetHotSpotMode(LONG nMode, LONG nHotSpotId)

7.66.1.1 Implementation in C#
int nResult = axSTPadCapt1.ControlSetHotspotMode(0, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.66.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.ControlSetHotspotMode(0, 0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.66.2 STPadLib.dll
Not available.

7.66.3 STPadLibNet.dll
Available from Version 8.1.2 onwards.
void ControlSetHotSpotMode(signotec.STPadLibNet.HotSpotMode mode, int
hotSpotId)

Sub ControlSetHotspotMode(ByVal mode As
signotec.STPadLibNet.HotSpotMode, ByVal hotSpotId As Integer)
The HotSpotMode enumeration is defined as follows:
Inactive = 0,
Active = 1,
InvertOff = 2

Guide_SIGAPI_20210108_ENG 147

7.66.3.1 Implementation in C#
try
{
 stPad.SensorSetHotspotMode(HotSpotMode.Inactive, 0);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.66.3.2 Implementation in Visual Basic
Try
 STPad.SensorSetHotspotMode(HotSpotMode.Inactive, 0)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 ControlGetErrorString method
This method returns an error description in German, English, French or Italian, depending on the system
language.

Parameter Values I/O Description
BSTR* pbstrError String O Error description.
LPCWSTR szError NULL I The method returns the length of the error

description in the pnStringLength parameter
!=
NULL

I/O Array in which the error description is written; if the
array is too small, the end characters are cut off

LONG*
pnStringLength

>= 0 I/O Length of the error description incl. terminated 0 or
size of the szError array in bytes

LONG nErrorId

0 I The description of the last error that occurred will be
returned.

< 0 I Error number, for which the description should be
returned.

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.67.1 STPadCapt.ocx
Available from Version 8.0.11 onwards.
LONG ControlGetErrorString(BSTR* pbstrError, LONG nErrorId)

7.67.1.1 Implementation in C#
string strError = "";
axSTPadCapt1.ControlGetErrorString(ref strError, 0);
MessageBox.Show(strError);

7.67.1.2 Implementation in Visual Basic
Dim strError As String = ""
AxSTPadCapt1.ControlGetErrorString(strError, 0)
MsgBox(strError)

Guide_SIGAPI_20210108_ENG 148

7.67.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STControlGetErrorString(LPCWSTR szError, LONG* pnStringLength, LONG
nErrorId)

7.67.2.1 Implementation in C++
LONG nLen = 0;
LONG nRc = STControlGetErrorString(NULL, &nLen, 0);
if (nRc == 0)
{
 WCHAR* szError = new WCHAR[nLen / sizeof(WCHAR)];
 nRc = STControlGetErrorString(szError, &nLen, 0);
 if (nRc == 0)
 wprintf(szError);
 delete [] szError;
}

7.67.3 STPadLibNet.dll
Not available. Please use the Message property of the STPadException instead.

 ControlSetSTPadLib method
This method allows an instance of the STPadLib class to be passed that is to be used by the
STPadLibControl class to communicate with signotec LCD pads. It can be called at any time. For
example, a STPadLibControl object can be used to alternately display the screen content of two different
devices that are each opened in a STPadLib object. After assignment, it makes no difference whether the
methods and properties of the STPadLib or STPadLibControl instance are used.
If a STPadLib object, which is already assigned to a STPadLibControl object, is assigned to another
STPadLibControl object, the assignment to the earlier object is removed.
This method should only be used if a separate instance of the STPadLib class is used.

Parameter Values I/O Description
STPadLib stPadLib !=

NULL
I The STPadLib object to be used for communication

NULL I The currently used STPadLib object is removed and
destroyed (provided it was created internally); the
control element will use a new internal instance of
the STPadLib class for communication purposes

Return value Values Description
- - -

7.68.1 STPadCapt.ocx
Not available.

7.68.2 STPadLib.dll
Not available.

7.68.3 STPadLibNet.dll
Available from Version 8.0.21 onwards (only in the STPadLibControl class).
void ControlSetSTPadLib(signotec.STPadLibNet.STPadLib stPadLib)

Sub ControlSetSTPadLib(ByVal stPadLib As signotec.STPadLibNet.STPadLib)

Guide_SIGAPI_20210108_ENG 149

7.68.3.1 Implementation in C#
STPadLib STPad = new STPadLib();
STPadLibControl STPadCtrl = new STPadLibControl();
STPadCtrl.ControlSetSTPadLib(STPad);

7.68.3.2 Implementation in Visual Basic
Dim WithEvents STPad As STPadLib = New STPadLib
Dim WithEvents STPadCtrl As STPadLibControl = New STPadLibControl
STPadCtrl.ControlSetSTPadLib(STPad)

 ControlSetCallback method
This method defines a callback routine that is called if one of the events is triggered. For more
information, see the section ‘Events’.

Parameter Values I/O Description
CBPTR pCallback NULL I No callback is used

!=
NULL

I Pointer to the callback routine

LPVOID pCustomPar all I Any parameter that is passed when the callback
routine is called; normally a pointer to the class
whose methods are called from the callback routine

Return value Values Description
- - -

7.69.1 STPadCapt.ocx
Not available.

7.69.2 STPadLib.dll
Available from Version 8.0.19 onwards.
VOID STControlSetCallback(CBPTR pCallback, LPVOID pCustomPar)
The CBPTR type is defined as follows:
typedef VOID (*CBPTR)(LONG nEvent, LPVOID pData, LONG nDataSize, LPVOID
pCustomPar);

Parameter Values I/O Description
LONG nEvent Index of the triggered event from the following list:

0 I DeviceDisconnected()
1 I SensorHotSpotPressed()
2 I SensorTimeoutOccured()
3 I DisplayScrollPosChanged()
4 I SignatureDataReceived()

LPVOID pData !=
NULL

I Array of data that is given as a parameter to the
event; please refer to the respective event for a
description of the parameters

LONG nDataSize > 0 I Size of the pData array in bytes
LPVOID pCustomPar all I Parameter that was passed when calling

STControlSetCallback(); normally a pointer
to the class whose methods are called from the
callback routine

Return value Values Description
- - -

Guide_SIGAPI_20210108_ENG 150

The following values defined in the header file can be used for the nEvent parameter:
#define STPAD_CALLBACK_DISCONNECT 0
#define STPAD_CALLBACK_HOTSPOT 1
#define STPAD_CALLBACK_TIMEOUT 2
#define STPAD_CALLBACK_SCROLL 3
#define STPAD_CALLBACK_SIGNATURE 4

7.69.2.1 Implementation in C++
VOID Callback(LONG nEvent, LPVOID pData, LONG nDataSize, LPVOID
pCustomPar)
{
 if (!pCustomPar)
 return;

 CMyClass* pCls = (CMyClass*)pCustomPar;
 switch (nEvent)
 {
 case STPAD_CALLBACK_DISCONNECT:
 if (nDataSize >= sizeof(LONG))
 pCls->DeviceDisconnected(*(LONG*)pData);
 break;
 case STPAD_CALLBACK_HOTSPOT:
 if (nDataSize >= sizeof(LONG))
 pCls->SensorHotSpotPressed(*(LONG*)pData);
 break;
 case STPAD_CALLBACK_TIMEOUT:
 if (nDataSize >= sizeof(LONG))
 pCls->SensorTimeoutOccured(*(LONG*)pData);
 break;
 case STPAD_CALLBACK_SCROLL:
 if (nDataSize >= (2 * sizeof(LONG)))
 pCls->DisplayScrollPosChanged(*(LONG*)pData,
((LONG)pData + 1));
 break;
 case STPAD_CALLBACK_SIGNATURE:
 if (nDataSize >= (4 * sizeof(LONG)))
 pCls->SignatureDataReceived(*(LONG*)pData,
((LONG)pData + 1), *((LONG*)pData + 2), *((LONG*)pData + 3));
 break;
 }
}

CMyClass::CMyClass()
{
 STControlSetCallback(&Callback, (VOID*)this);
}

7.69.3 STPadLibNet.dll
Not available.

 ControlExit method
This method releases used resources; it must be called before the component is de-initialised.

Parameter Values I/O Description
- - - -

Guide_SIGAPI_20210108_ENG 151

Return value Values Description
- - -

7.70.1 STPadCapt.ocx
Not available.

7.70.2 STPadLib.dll
Available from Version 8.0.19 onwards.
VOID STControlExit()

7.70.2.1 Implementation in C++
STControlExit();

7.70.3 STPadLibNet.dll
Not available.

 RSAGenerateSigningCert/RSAGenerateSigningCert method
This method initiates the generation of a unique RSA key pair in the device that is used to sign data. The
keys generated are saved permanently together with a public X.509 certificate, which is customised
using the serial number of the device as well as a Certificate Signing Request (CSR). If the
RSASignPasswordLength property has been set in advance, signing cannot take place with the
certificate until a password with a respective minimum length has been specified using
RSASetSignPassword().
Note: Generation may last several minutes depending on key length!
It is possible to permanently disable the generation of a pair of keys inside the signature device. This
function can also be protected with a password. Please refer to your contact at signotec as required.
These methods only work with the Sigma model from firmware 1.16. With the Omega model, they only
work from firmware 1.25.

Parameter Values I/O Description
LONG nKeyLen

int keyLen

ByVal keyLen As
Integer

1024
–

4096

I Key length in bits;
If the device property “Supports4096BitKeys” has
been set, the pad will support all multiples of 8
within the specified range as length. Otherwise only
the values 1024 and 2048 are supported. See also
DeviceGetCapabilities().

0 I No key figures are generated; only the certificate
with the stored key figures is created again; this only
works if the key pair saved in the signature device
has a length of 1024 or 2048 bits

LONG nValidity

int validity

ByVal validity As
Integer

0 I The generated certificate is valid until 31.12.2049.
>0 I Duration of validity of the certificate in months from

current date

Guide_SIGAPI_20210108_ENG 152

BSTR
bstrDevicePasswor
d

LPCWSTR
szDevicePassword

SecureString
devicePassword

ByVal
devicePassword As
SecureString

max. 32
charact

ers

I Password of the device (if it is password protected);
please refer to your contact at signotec for details

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.71.1 STPadCapt.ocx
Available from Version 8.0.26 onwards. The status described is available from Version 8.4.0 onwards.
LONG RSAGenerateSigningCert(LONG nKeyLen, LONG nValidity)

LONG RSAGenerateSigningCertPw(LONG nKeyLen, LONG nValidity, BSTR
bstrDevicePassword)

7.71.1.1 Implementation in C#
int nResult = axSTPadCapt1.RSAGenerateSigningCert(2048, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.71.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.RSAGenerateSigningCert(2048,
0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.71.2 STPadLib.dll
Available from Version 8.0.26 onwards. The status described is available from Version 8.4.0 onwards.
LONG STRSAGenerateSigningCert(LONG nKeyLen, LONG nValidity)

LONG STRSAGenerateSigningCertPw(LONG nKeyLen, LONG nValidity, LPCWSTR
szDevicePassword)

7.71.2.1 Implementation in C++
long nResult = STRSAGenerateSigningCert(2048, 0);
if (nResult < 0)
 AfxMessageBox(L"Error!");

7.71.3 STPadLibNet.dll
Available from Version 8.0.26 onwards. The status described is available from Version 8.4.2.0.

Guide_SIGAPI_20210108_ENG 153

void RSAGenerateSigningCert(int keyLen, int validity)

void RSAGenerateSigningCertPw(int keyLen, int validity,
System.Security.SecureString devicePassword)

Sub RSAGenerateSigningCert(ByVal keyLen As Integer, ByVal validity As
Integer)

Sub RSAGenerateSigningCertPw(ByVal keyLen As Integer, ByVal validity As
Integer, ByVal devicePassword As System.Security.SecureString)

7.71.3.1 Implementation in C#
try
{
 stPad.RSAGenerateSigningCert(2048, 0);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.71.3.2 Implementation in Visual Basic
Try
 STPad.RSAGenerateSigningCert(2048, 0)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 RSASetSigningCert/RSASetSigningCertPw method
This method imports an X.509 certificate or a PKCS#12 container, the private key of which is intended to
be used for signing data and saves the certificate and, if necessary, the key pair permanently in the
signature device. If only the public key is transferred, the public key must correspond to the key already
generated and saved in the signature device and only the certificate saved in the device will be
overwritten. If a PKCS#12 container with a private key and public certificate is transferred, the keys and
the certificate will be overwritten in the device, a saved Certificate Signing Request (CSR) will be deleted.
If the RSASignPasswordLength property has been set in advance, signing cannot take place with
the certificate until a password with a respective minimum length has been specified using
RSASetSignPassword().
It is possible to permanently disable the storing of a key pair (generated outside the signature device)
inside the device. This function can also be protected with a password. Please refer to your contact at
signotec as required.
These methods only work with the Sigma model from firmware 1.16. With the Omega model, they only
work from firmware 1.25.

Parameter Values I/O Description
VARIANT& vaCert

BYTE* pbtCert

X509Certificate2
cert

string cert

ByVal cert As
X509Certificate2

ByVal cert As
String

!=
NULL

I X.509- Certificate or PKCS#12 container from the
memory or a file. If the device property
“Supports4096BitKeys” has been set, the pad will
support all multiples of 8 within the range of 1024
to 4096 as length. Otherwise only the values 1024
and 2048 bit are supported. See also
DeviceGetCapabilities().

LONG nSize 0 I The pbtCert pointer is a WCHAR* type and points
to the certificate file path or URL.

> 0 I Size of transferred byte array
BSTR bstrPassword

LPCWSTR
szPassword

SecureString
password

ByVal password As
SecureString

all I Password used to fetch the private key (ignored if an
X.509 certificate is transferred)

BSTR
bstrDevicePasswor
d

LPCWSTR
szDevicePassword

SecureString
devicePassword

ByVal
devicePassword As
SecureString

max. 32
charact

ers

I Password of the device (if it is password protected);
please refer to your contact at signotec for details

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.72.1 STPadCapt.ocx
Available from Version 8.0.26 onwards. The status described is available from Version 8.4.0 onwards.
LONG RSASetSigningCert(VARIANT& vaCert, BSTR bstrPassword)

LONG RSASetSigningCertPw(VARIANT& vaCert, BSTR bstrPassword, BSTR
bstrDevicePassword)
Note: The vaCert parameter must contain a byte array or a string.

7.72.1.1 Implementation in C#
Work in the memory:
X509Certificate2 cert = new X509Certificate2(@"C:\Cert.cer");
int nResult = axSTPadCapt1.RSASetSigningCert
(cert.Export(X509ContentType.Cert), null);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

Guide_SIGAPI_20210108_ENG 155

Work with files:
int nResult = axSTPadCapt1.RSASetSigningCert(@"C:\Cert.cer",
null);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.72.1.2 Implementation in Visual Basic
Work in the memory:
Dim cert As X509Certificate2 = New X509Certificate2("C:\Cert.cer")
Dim nResult As Integer = AxSTPadCapt1.RSASetSigningCert _
(cert.Export(X509ContentType.Cert), Nothing)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

Work with files:
Dim nResult As Integer
nResult = AxSTPadCapt1.RSASetSigningCert("C:\Cert.cer", Nothing)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.72.2 STPadLib.dll
Available from Version 8.0.26 onwards. The status described is available from Version 8.4.0 onwards.
LONG STRSASetSigningCert(BYTE* pbtCert, LONG nSize, LPCWSTR szPassword)

LONG STRSASetSigningCertPw(BYTE* pbtCert, LONG nSize, LPCWSTR
szPassword, LPCWSTR szDevicePassword)

7.72.2.1 Implementation in C++
Work in the memory:
long nResult;
nResult = STRSASetSigningCert(&btCert, sizeof(btCert), NULL);
if (nResult < 0)
 AfxMessageBox(L"Error!");

Work with files:
long nResult = STRSASetSigningCert((BYTE*)L"C:\\Cert.cer", 0,
NULL);
if (nResult < 0)
 AfxMessageBox(L"Error!");

7.72.3 STPadLibNet.dll
Available from Version 8.0.26 onwards. The status described is available from Version 8.4.2 onwards.

Guide_SIGAPI_20210108_ENG 156

void RSASetSigningCert(System.Security.Cryptography.X509Certificates.
X509Certificate2 cert, System.Security.SecureString password)

void RSASetSigningCert(string cert, System.Security.SecureString
password)

void RSASetSigningCertPw(System.Security.Cryptography.X509Certificates.
X509Certificate2 cert, System.Security.SecureString password,
System.Security.SecureString devicePassword)

void RSASetSigningCertPw(string cert, System.Security.SecureString
password, System.Security.SecureString devicePassword)

Sub RSASetSigningCert(ByVal cert As System.Security.Cryptography.
X509Certificates.X509Certificate2, ByVal password As
System.Security.SecureString)

Sub RSASetSigningCert(ByVal cert As String, ByVal password As
System.Security.SecureString)

Sub RSASetSigningCertPw(ByVal cert As System.Security.Cryptography.
X509Certificates.X509Certificate2, ByVal password As
System.Security.SecureString, ByVal devicePassword As
System.Security.SecureString)

Sub RSASetSigningCertPw(ByVal cert As String, ByVal password As
System.Security.SecureString, ByVal devicePassword As
System.Security.SecureString)

7.72.3.1 Implementation in C#
Work in the memory:
try
{
 stPad.RSASetSigningCert(new X509Certificate2(@"C:\Cert.cer"),
null);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Work with files:
try
{
 stPad.RSASetSigningCert(@"C:\Cert.cer", null);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.72.3.2 Implementation in Visual Basic
Work in the memory:
Try
 STPad.RSASetSigningCert(New X509Certificate2("C:\Cert.cer"),
DirectCast(Nothing, SecureString))
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Guide_SIGAPI_20210108_ENG 157

Work with files:
Try
 STPad.RSASetSigningCert("C:\Cert.cer",
DirectCast(Nothing, SecureString))
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 RSASaveSigningCertAsStream / RSASaveSigningCertAsFile method
Using this method, the public X.509 certificate stored in the signature device or the Certificate Signing
Request (CSR), whose corresponding private key is used to sign data, can be read out or saved to a file.
With the Sigma model this method only works from firmware 1.16. With the Omega model, it only works
from firmware 1.25.

Parameter Values I/O Description
BYTE* pbtCert NULL I The method returns the required size of the array in

the pnSize parameter.
!=
NULL

I/O Array in the required size in which the X.509
certificate or CSR is written;pnSize must
correspond to the value returned for the previous
call

LONG* pnSize > 0 I/O Size of the array (in bytes) in which the certificate is
to be written

BSTR bstrPath

LPCWSTR szPath

string path

ByVal path As
String

!=
NULL

I Storage location for the certificate as full path that
includes the file name

LONG nType

CERTTYPE nType

CertType type

ByVal type As
CertType

0 I Public certificate is read and DER returned
encoded/saved or returned as
X509Certificate2
(RSASaveSigningCertAsStream() for
STPadLibNet.dll)

1 I The CSR is read and the DER returned encoded or
saved; a public X.509 certificate can be issued by a
certification body with this, which can subsequently
be saved in the signature device using the
RSASetSigningCert() method

2 I Public certificate is read and PEM returned encoded
or saved

3 I The CSR is read and the PEM returned encoded or
saved; a public X.509 certificate can be issued by a
certification body with this, which can subsequently
be saved in the signature device using the
RSASetSigningCert() method

Return value Values Description
VARIANT empty Error

other X.509 certificate or CSR as byte array
LONG 0 Method was executed successfully

< 0 Error

Guide_SIGAPI_20210108_ENG 158

X509Certificate2

byte[]

Byte()

!=
NULL

X.509 certificate as X509Certificate2 or PEM encoded
certificate / CSR as byte array

7.73.1 STPadCapt.ocx
Available from Version 8.0.26 onwards. The status described is available from Version 8.4.3 onwards.
VARIANT RSASaveSigningCertAsStream(LONG nType)

LONG STRSASaveSigningCertAsFile(LPCWSTR szPath, CERTTYPE nType)

7.73.1.1 Implementation in C#
Work in the memory:
byte[] btCert =
(byte[])axSTPadCapt1.RSASaveSigningCertAsStream(0);
if (btCert == null)
{
 MessageBox.Show(String.Format("Error"));
 return;
}

Work with files:
int nResult =
axSTPadCapt1.RSASaveSigningCertAsFile(@"C:\Cert.cer", 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.73.1.2 Implementation in Visual Basic
Work in the memory:
Dim btCert As Byte() = AxSTPadCapt1.RSASaveSigningCertAsStream(0)
If btCert Is Nothing Then
 MsgBox("Error")
 Exit Sub
End If

Work with files:
Dim nResult As Integer
nResult = AxSTPadCapt1.RSASaveSigningCertAsFile("C:\Cert.cer", 0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.73.2 STPadLib.dll
Available from Version 8.0.26 onwards. The status described is available from Version 8.4.3 onwards.
LONG STRSASaveSigningCertAsStream(BYTE* pbtCert, LONG* pnSize, CERTTYPE
nType)

LONG STRSASaveSigningCertAsFile(LPCWSTR szPath, CERTTYPE nType)
The CERTTYPE enumeration is defined as follows:
kCert_DER = 0,
kCSR_DER = 1,
kCert_PEM = 2,
kCSR_PEM = 3

Guide_SIGAPI_20210108_ENG 159

7.73.2.1 Implementation in C++
Work in the memory:
long nSize = 0;
long nResult = STRSASaveSigningCertAsStream(NULL, &nSize,
kCert_DER);
BYTE* pbtCert = NULL;
if (nResult == 0)
{
 pbtCert = new BYTE[nSize];
 nResult = STRSASaveSigningCertAsStream(pbtCert, &nSize,
kCert_DER);
}
if (nResult < 0)
 AfxMessageBox(L"Error!");

Work with files:
long nResult = STRSASaveSigningCertAsFile(L"C:\\Cert.cer",
kCert_DER);
if (nResult < 0)
 AfxMessageBox(L"Error!");

7.73.3 STPadLibNet.dll
Available from Version 8.0.26 onwards. The status described is available from Version 8.4.3 onwards.
object RSASaveSigningCertAsStream(signotec.STPadLibNet.CertType type)

void RSASaveSigningCertAsFile(string path, signotec.STPadLibNet.CertType
type)

Function RSASaveSigningCertAsStream(ByVal type As
signotec.STPadLibNet.CertType) As Object

Sub RSASaveSigningCertAsFile(ByVal path As String, ByVal type As
signotec.STPadLibNet.CertType)
The CertType enumeration is defined as follows:
Cert_DER = 0,
CSR_DER = 1
Cert_PEM = 2,
CSR_PEM = 3

7.73.3.1 Implementation in C#
Work in the memory:
X509Certificate2 cert;
try
{
 cert = (X509Certificate2)stPad.RSASaveSigningCertAsStream
(CertType.Cert_DER);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Guide_SIGAPI_20210108_ENG 160

Work with files:
try
{
 stPad.RSASaveSigningCertAsFile(@"C:\Cert.cer",
CertType.Cert_DER);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.73.3.2 Implementation in Visual Basic
Work in the memory:
Dim cert As X509Certificate2
Try
 cert = STPad.RSASaveSigningCertAsStream(CertType.Cert_DER)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Work with files:
Try
 STPad.RSASaveSigningCertAsFile("C:\Cert.cer",
CertType.Cert_DER)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 RSASetHash method
This method can be used to transfer a data block (hash 1) that is to be signed in the signature device.
Subsequently, RSASign() can be called up in order to sign hash 1 directly, or SignatureStart(),
in order to transfer hash 1 to the signature device and, after capturing the signature, to sign together
with hash 2 which is generated using the biometric data.
It is possible to permanently disable the signing of a hash that was generated outside the signature
device inside the device. In this case, hash 1 can only be generated using the
RSACreateDisplayHash() method. Please refer to your contact at signotec as required.
With the Sigma model this method only works from firmware 1.16. With the Omega model, it only works
from firmware 1.25.

Parameter Values I/O Description
VARIANT& vaHash

BYTE* pbtHash

byte[] hash

ByVal hash As
Byte()

!=
NULL

I Byte array with a hash with a length of up to
32 bytes (depending on algorithm), the content of
which is to be signed

NULL I Only hash 2 is generated on the biometric data;
accordingly, RSASign() cannot be used to sign
Hash 1

Guide_SIGAPI_20210108_ENG 161

LONG nAlgorithm

HASHALGO
nAlgorithm

HashAlgo
algorithm

ByVal algorithm
As HashAlgo

Algorithm that has been used to create the data block to be signed
and/or with which Hash 1 and Hash 2 are to be generated:

0 I SHA-1 (hash 1 must be 20 bytes long)
1 I SHA-256 (hash 1 must be 32 bytes long)

LONG nOptions

HashFlag options

ByVal options As
HashFlag

Bitmask containing one or more hexadecimal values from the
following list:
0x01 I The data block to be signed is in little endian byte

order (otherwise in big endian)
0x02 I The given byte array does not contain a hash; rather,

it contains data with which the hash is to be
calculated

LONG nDataSize = 0 I Size of the transferred byte array; ignored if
nOptions does not contain the value 0x02; the
length is then determined using the nAlgorithm
parameter

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.74.1 STPadCapt.ocx
Available from Version 8.0.26 onwards. The status described is available from Version 8.1.3 onwards.
LONG RSASetHash(VARIANT& vaHash, LONG nAlgorithm, LONG nOptions)
Note: The vaHash parameter must be NULL or contain a byte array.

7.74.1.1 Implementation in C#
int nResult = axSTPadCapt1.RSASetHash(hash, 1, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.74.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.RSASetHash(hash, 1, 0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.74.2 STPadLib.dll
Available from Version 8.0.26 onwards. The status described is available from Version 8.4.0 onwards.
LONG STRSASetHash(BYTE* pbtHash, HASHALGO nAlgorithm, LONG nOptions,
LONG nDataSize=0)
The HASHALGO enumeration is defined as follows:
kSha1 = 0,
kSha256 = 1
The following values defined in the header file can be used for the nOptions parameter:
#define STPAD_RSA_LITTLEENDIAN 0x01
#define STPAD_RSA_HASHDATA 0x02

Guide_SIGAPI_20210108_ENG 162

7.74.2.1 Implementation in C++
long nResult = STRSASetHash(pbtHash, kSha256, 0);
if (nResult < 0)
 AfxMessageBox(L"Error!");

7.74.3 STPadLibNet.dll
Available from Version 8.0.26 onwards.
void RSASetHash(signotec.STPadLibNet.HashAlgo algorithm)

void RSASetHash(byte[] hash, signotec.STPadLibNet.HashAlgo algorithm,
signotec.STPadLibNet.HashFlag options)

Sub RSASetHash(ByVal algorithm As signotec.STPadLibNet.HashAlgo)

Sub RSASetHash(ByVal hash As Byte(), ByVal algorithm As
signotec.STPadLibNet.HashAlgo, ByVal options As
signotec.STPadLibNet.HashFlag)
The HashAlgo enumeration is defined as follows:
SHA1 = 0,
SHA256 = 1
The HashFlag enumeration is defined as follows:
None = 0x00,
LittleEndian = 0x01,
HashData = 0x02

7.74.3.1 Implementation in C#
try
{
 stPad.RSASetHash(hash, HashAlgo.SHA256, HashFlag.None);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.74.3.2 Implementation in Visual Basic
Try
 STPad.RSASetHash(hash, HashAlgo.SHA256, HashFlag.None)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 RSACreateDisplayHash method
This method initiates the calculation of a hash sum in the signature device using the content of the
image memory and supplies, as a byte array, the image data stream that was used to calculate hash 1.
One of the following methods should then be called: SignatureStart() to start content signing or
RSASign() to enable hash 1 to be signed in the signature device. Calling SignatureCancel()
discards the previously generated hash 1. It is sometimes not possible to access other methods.
Content signing is unique in that the screen content displayed during signing in the form of hash 1 can
be signed together with the hash based on biometric data (hash 2). Hash 2 can be calculated
retrospectively using the biometric data supplied when calling the RSAGetSignData() method (see
also RSADecryptSignData()). As a result, the screen content is inseparably linked with the
signature.

Guide_SIGAPI_20210108_ENG 163

The image data stream that is returned can be converted into an image using the
RSACreateHashedImage() method. If the source memory contains content from a permanent
memory that has not been previously reserved, this data is not included in the calculation of the hash
sum! If the content of the selected source memory is empty, no image data stream is returned.
Note: The calculation of the hash sum may last several seconds depending on the image data and
algorithm.
With the Sigma model this method only works from firmware 1.16. With the Omega model, it only works
from firmware 1.25 and with the Alpha model, it only works from firmware 1.8.

Parameter Values I/O Description
BYTE*
pbtImageData

NULL I The method returns the required size of the array in
the pnSize parameter.

!=
NULL

I/O Byte array in the required size that is used to write
the image data stream and was used to calculate
hash 1; pnSize must correspond to the value
returned during the last call.

LONG* pnSize

128
256

I/O Size of the byte array that is referenced by
pbtImageData in bytes

LONG nAlgorithm

HASHALGO
nAlgorithm

HashAlgo
algorithm

ByVal algorithm
As HashAlgo

Algorithm to be used to generate hash 1
0 I SHA-1
1 I SHA-256
2 I SHA-512

LONG nSource

DisplayTarget
source

ByVal target As
source

0 I The content of the foreground buffer corresponding
to the size of the display is used for the calculation.

1 I The content of the background memory
corresponding to the size of the display is used for
the calculation and subsequently displayed in the
visible foreground memory

1000 I The content of the virtual memory in the API
corresponding to the size of the display is used for
the calculation and subsequently displayed in the
visible foreground memory; as a rule, this memory
should be used, as the data is optimised in the API
before transfer, meaning it can be displayed faster

other I ID of the permanent memory whose content
corresponding to the size of the display is used for
the calculation and subsequently displayed in the
visible foreground memory

Return value Values Description
VARIANT empty Error or the content of the source memory is empty

other The image data stream as a byte array that was used to
calculate hash 1

LONG 0 Method was executed successfully
< 0 Error

Guide_SIGAPI_20210108_ENG 164

byte[]

Byte()

NULL The content of the source memory is empty

7.75.1 STPadCapt.ocx
Available from Version 8.0.23.9 onwards.
VARIANT RSACreateDisplayHash(LONG nAlgorithm, LONG nSource)

7.75.1.1 Implementation in C#
int nResult = axSTPadCapt1.RSACreateDisplayHash(1, 1000);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.75.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.RSACreateDisplayHash(1,
1000)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.75.2 STPadLib.dll
Available from Version 8.0.23.9 onwards.
LONG STRSACreateDisplayHash(BYTE* pbtImageData, LONG* pnSize, HASHALGO
nAlgorithm, LONG nSource)
The HASHALGO enumeration is defined as follows:
kSha1 = 0,
kSha256 = 1,
kSha512 = 2
The following values defined in the header file can be used for the nTarget parameter:
#define STPAD_TARGET_FOREGROUND 0
#define STPAD_TARGET_BACKGROUND 1
#define STPAD_TARGET_DISPLAYHASH 1000

7.75.2.1 Implementation in C++
long nSize = 0;
BYTE* pbtImageData = NULL;
long nResult = STRSACreateDisplayHash(NULL, &nSize, kSha256,
STPAD_TARGET_DISPLAYHASH);
if (nResult == 0)
{
 pbtImageData = new BYTE[nSize];
 nResult = STRSACreateDisplayHash(pbtImageData, &nSize,
kSha256, STPAD_TARGET_DISPLAYHASH);
}
if (nResult < 0)
 AfxMessageBox(L"Error!");

7.75.3 STPadLibNet.dll
Available from Version 8.0.23.9 onwards.

Guide_SIGAPI_20210108_ENG 165

byte[] RSACreateDisplayHash(signotec.STPadLibNet.HashAlgo algorithm,
signotec.STPadLibNet.DisplayTarget source)

Function RSACreateDisplayHash(ByVal algorithm As
signotec.STPadLibNet.HashAlgo, ByVal source As
signotec.STPadLibNet.DisplayTarget) As Byte()
The HashAlgo enumeration is defined as follows:
SHA1 = 0,
SHA256 = 1,
SHA512 = 2
The DisplayTarget enumeration is defined as follows:
ForegroundBuffer = 0,
BackgroundBuffer = 1,
Reserved1 = 3,
Reserved2 = 4,
Reserved3 = 5,
Reserved4 = 6,
Reserved5 = 7,
Reserved6 = 8,
Reserved7 = 9,
Reserved8 = 10,
Reserved9 = 11,
Reserved10 = 12,
Reserved11 = 13,
DisplayHashBuffer = 1000

7.75.3.1 Implementation in C#
byte[] imageData = null;
try
{
 imageData = stPad.RSACreateDisplayHash(HashAlgo.SHA256,
DisplayTarget.DisplayHashBuffer);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.75.3.2 Implementation in Visual Basic
Dim imageData() As Byte
Try
 imageData = STPad.RSACreateDisplayHash(HashAlgo.SHA256, _
DisplayTarget.DisplayHashBuffer)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 RSACreateHashedImage method
This method generates an image from the image data stream that was returned by the
RSACreateDisplayHash() method.

Parameter Values I/O Description
VARIANT&
vaImageData

BYTE*
pbtImageData

byte[] imageData

ByVal imageData
As Byte()

!=
NULL

I Image data stream, as it was returned by the
RSACreateDisplayHash() method, as a byte
array

LONG
nImageDataSize

> 0 I Size of the array that is referenced by
pbtImageData in bytes

OLE_COLOR clrBack

COLORREF clrBack

Color backColor

ByVal backColor
As Color

>= 0 I Colour of the pixels that were not included in the
image data stream; these pixels may arise if, when
CreateDisplayHash() is called, the source
memory contained image data from a permanent
memory that had not been reserved in advance;
otherwise, this parameter has no effect.

LONG nModelType

int modelType

ByVal modelType
As Integer

Model type of the signature device from which the image data
stream originates; this determines the colour depth and resolution of
the image
1, 2 I ‘Sigma’ model type
5, 6 I ‘Zeta’ model type
11,
12

I ‘Omega’ model type

15,
16

I ‘Gamma’ model type

21,
22,
23

I ‘Delta’ model type

31,
32,
33

I ‘Alpha’ model type

BYTE* pbtImage NULL I The method calculates the image, caches it and
returns the required size of the array in the pnSize
parameter.

other I/O Array (in the required size) in which the cached
image data is written; pnSize must correspond to
the value returned for the previous call; all other
parameters are ignored.

LONG* pnSize > 0 I/O Size of the array in which the image data is to be
written

LONG nFileType

FILETYPE
nFileType

0 I Use TIFF with CCITT4 compression (b/w image) or
LZW compression (colour image) as the file format
(recommended)

1 I Use PNG file format
2 I Use BMP file format
3 I Use JPEG with a quality setting of 75 as the file

format
4 I Use GIF as the file format

200 -
204

I Image data is not returned as binary data, but as
Base64 encoded data; otherwise as values 0–4 (only
STPadCapt.ocx)

Guide_SIGAPI_20210108_ENG 167

Return value Values Description
VARIANT empty Error

other Image data as array of Bytes or Base64-coded String
LONG 0 Method was executed successfully

< 0 Error
Bitmap !=

NULL
Image as System.Drawing.Bitmap

7.76.1 STPadCapt.ocx
Available from Version 8.0.23.9 onwards. The status described is available from Version 8.3.1 onwards.
VARIANT RSACreateHashedImage(VARIANT& vaImageData, OLE_COLOR clrBack,
LONG nModelType, LONG nFileType)

7.76.1.1 Implementation in C#
byte[] btImage =
(byte[])axSTPadCapt1.RSACreateHashedImage(btImageData, 0, 11, 0);
if (btImage == null)
{
 MessageBox.Show(String.Format("Error"));
 return;
}
MemoryStream memoryStream = new MemoryStream(btImage);
Image image = Image.FromStream(memoryStream);

7.76.1.2 Implementation in Visual Basic
Dim btImage() As Byte
btImage = AxSTPadCapt1.RSACreateHashedImage(btImageData, 0, 11, 0)
If btImage Is Nothing Then
 MsgBox("Error")
 Exit Sub
End If
Dim memoryStream As MemoryStream = New MemoryStream(btImage)
Dim image As Image = Image.FromStream(memoryStream)

7.76.2 STPadLib.dll
Available from Version 8.0.23.9 onwards. The status described is available from Version 8.3.1 onwards.
LONG STRSACreateHashedImage(BYTE* pbtImageData, LONG nImageDataSize,
COLORREF clrBack, LONG nModelType, BYTE* pbtImage, LONG* pnSize,
FILETYPE nFileType)
The FILETYPE enumeration is defined as follows:
kTiff = 0,
kPng = 1,
kBmp = 2,
kJpeg = 3,
kGif = 4

Guide_SIGAPI_20210108_ENG 168

7.76.2.1 Implementation in C++
long nSize = 0;
long nResult = STRSACreateHashedImage(btImageData,
sizeof(btImageData), 0, 11, NULL, &nSize, kBmp);
BYTE* pbtImage = NULL;
BITMAP bitmap;
if (nResult == 0)
{
 pbtImage = new BYTE[nSize];
 nResult = STRSACreateHashedImage(btImageData,
sizeof(btImageData), 0, 11, pbtImage, &nSize, kBmp);
 BITMAPFILEHEADER bmfh = (*(BITMAPFILEHEADER*)pbtImage);
 BITMAPINFO bmi = (*(BITMAPINFO*)(pbtImage +
sizeof(BITMAPFILEHEADER)));
 bitmap.bmType = 0;
 bitmap.bmWidth = bmi.bmiHeader.biWidth;
 bitmap.bmHeight = bmi.bmiHeader.biHeight;
 bitmap.bmPlanes = bmi.bmiHeader.biPlanes;
 bitmap.bmBitsPixel = bmi.bmiHeader.biBitCount;
 bitmap.bmWidthBytes = ((bitmap.bmWidth * bitmap.bmBitsPixel +
31) >> 5) << 2;
 bitmap.bmBits = new BYTE[bitmap.bmHeight *
bitmap.bmWidthBytes];
 memcpy(bitmap.bmBits, pbtImage + bmfh.bfOffBits,
bitmap.bmHeight * bitmap.bmWidthBytes);
 delete [] pbtImage;
}
if (nResult < 0)
 AfxMessageBox(L"Error!");

7.76.3 STPadLibNet.dll
Available from Version 8.0.23.9 onwards. The status described is available from Version 8.3.1 onwards.
System.Drawing.Bitmap RSACreateHashedImage(byte[] imageData,
System.Drawing.Color backColor, int modelType)

Function RSACreateHashedImage(ByVal imageData As Byte(), ByVal backColor
As System.Drawing.Color, ByVal modelType As Integer) As
System.Drawing.Bitmap

7.76.3.1 Implementation in C#
Bitmap bitmap;
try
{
 bitmap = stPad.RSACreateHashedImage(imageData, Color.Black,
11);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Guide_SIGAPI_20210108_ENG 169

7.76.3.2 Implementation in Visual Basic
Dim bitmap As Bitmap
Try
 bitmap = STPad.RSACreateHashedImage(imageData, Color.Black,
11)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 RSASign/RSASignPw method
This method can be used to sign data in the signature device using the private key, which has been
generated using the RSAGenerateSigningCert() method or saved using the
RSASetSigningCert() method. If a minimum password length has been set when calling one of
these methods, a signing process is only possible after setting a password with
RSASetSignPassword() . Please also note the RSASignPasswordLength property.
With the Sigma model this method only works from firmware 1.16. With the Omega model, it only works
from firmware 1.25.

Parameter Values I/O Description
BYTE*
pbtSignature

NULL I The method returns the required size of the array in
the pnSize parameter.

!=
NULL

I/O Byte array in the required size, in which the signed
data block is written; pnSize must correspond to
the value returned for the previous call

LONG* pnSize

128
256

I/O Size of the array that is referenced by
pbtSignature in bytes

LONG nScheme

RSASCHEME nScheme

RSAScheme scheme

ByVal scheme As
RSAScheme

Signature scheme that is to be used
0 I Only a padding is added according to RSASSA-

PKCS1-V1_5, no hash OID
1 I The OID of the hash algorithm used and a padding

in accordance with RSASSA-PKCS1-V1_5 are added;
this scheme cannot be used if the combination of
hash 1 and hash 2 is to be signed

2 I The RSASSA-PSS signature scheme is used; the salt
has the same length as hash 1 and hash 2
respectively, and the algorithm using for encoding is
the same as the one that has been used to generate
hash 1 and hash 2 respectively; MGF 1 is used as
mask generation function.

LONG nHashValue

HASHVALUE
nHashValue

HashValue
hashValue

ByVal hashValue
As HashValue

Specifies the data block that is to be signed
0 I The combination of hash 1 and hash 2 is signed;

hash 1 is placed after hash 2 in big endian byte
order; if SHA1 is used, scheme RSASSA_PSS scheme
must be used; scheme RSASSA-PKCS1-V1_5 cannot
be used; if the SHA-512 algorithm was used, the key
saved in the signature device must be at least 2048
bit long

1 I Hash 1 is signed, which is transferred when
RSASetHash() is called.

2 I Hash 2, which has been generated using the
biometric data, is signed

LONG nOptions

SignFlag options

ByVal options As
SignFlag

Bitmask containing one or more hexadecimal values from the
following list:
0x01 I The signature result is returned in little endian byte

order (otherwise in big endian)
0x02 I The signature result is returned as message PKCS#7

(CMS); the value 0x01 is ignored; the RSA scheme
must be RSASSA-PKCS1-V1_5 with OID (value 1)

0x04 I Includes not only the end certificate, but the
certificate chain with the exception of the root
certificate (only if 0x02 is also set)

Guide_SIGAPI_20210108_ENG 171

LPCWSTR
szSignPassword

LPCWSTR
bstrSignPassword

SecureString
signPassword

ByVal password As
SecureString

max. 32
charact

ers

I Password of the signature certificate (if it is
password protected)

Return value Values Description
VARIANT empty Error

other Signed data block as byte array
LONG 0 Method was executed successfully

< 0 Error
byte[]

Byte()

!=
NULL

Signed data block as byte array

7.77.1 STPadCapt.ocx
Available from Version 8.0.26 onwards. The status described is available from Version 8.4.3 onwards.
VARIANT RSASign(LONG nScheme, LONG nHashValue, LONG nOptions)

VARIANT RSASignPw(LONG nScheme, LONG nHashValue, LONG nOptions, LPCWSTR
bstrSignPassword)

7.77.1.1 Implementation in C#
byte[] btSignature = (byte[])axSTPadCapt1.RSASign(2, 0, 0);
if (btSignature == null)
{
 MessageBox.Show(String.Format("Error"));
 return;
}

7.77.1.2 Implementation in Visual Basic
Dim btSignature As Byte() = AxSTPadCapt1.RSASign(2, 0, 0)
If btSignature Is Nothing Then
 MsgBox("Error")
 Exit Sub
End If

7.77.2 STPadLib.dll
Available from Version 8.0.26 onwards. The status described is available from Version 8.4.3 onwards.
LONG STRSASign(BYTE* pbtSignature, LONG* pnSize, RSASCHEME nScheme,
HASHVALUE nHashValue, LONG nOptions)

LONG STRSASignPw(BYTE* pbtSignature, LONG* pnSize, RSASCHEME nScheme,
HASHVALUE nHashValue, LONG nOptions, LPCWSTR szSignPassword)
The RSASCHEME enumeration is defined as follows:
kNoHashOID = 0,
kPKCS1_V1_5 = 1,
kPSS = 2
The HASHVALUE enumeration is defined as follows:

Guide_SIGAPI_20210108_ENG 172

kCombination = 0,
kHash1 = 1,
kHash2 = 2
The following values defined in the header file can be used for the nOptions parameter:
#define STPAD_RSA_LITTLEENDIAN 0x01
#define STPAD_RSA_PKCS7 0x02
#define STPAD_RSA_INCLUDECHAIN 0x04

7.77.2.1 Implementation in C++
long nSize = 0;
long nResult = STRSASign(NULL, &nSize, kPSS, kCombination, 0);
BYTE* pbtSignature = NULL;
if (nResult == 0)
{
 pbtSignature = new BYTE[nSize];
 nResult = STRSASign(pbtSignature, &nSize, kPSS, kCombination,
0);
}
if (nResult < 0)
 AfxMessageBox(L"Error!");

7.77.3 STPadLibNet.dll
Available from Version 8.0.26 onwards. The status described is available from Version 8.4.3 onwards.
byte[] RSASign(signotec.STPadLibNet.RSAScheme scheme, HashValue
hashValue, signotec.STPadLibNet.SignFlag options)

byte[] RSASignPw(signotec.STPadLibNet.RSAScheme scheme, HashValue
hashValue, signotec.STPadLibNet.SignFlag options,
System.Security.SecureString signPassword)

Function RSASign(ByVal scheme As signotec.STPadLibNet.RSAScheme, ByVal
hashValue As signotec.STPadLibNet.HashValue, ByVal options As
signotec.STPadLibNet.SignFlag) As Byte()

Function RSASignPw(ByVal scheme As signotec.STPadLibNet.RSAScheme, ByVal
hashValue As signotec.STPadLibNet.HashValue, ByVal options As
signotec.STPadLibNet.SignFlag, ByVal signPassword as
System.Security.SecureString) As Byte()
The RSAScheme enumeration is defined as follows:
NoOID = 0,
PKCS1_V1_5 = 1,
PSS = 2
The HashValue enumeration is defined as follows:
Combination = 0,
Hash1 = 1,
Hash2 = 2
The SignFlag enumeration is defined as follows:
None = 0x00,
LittleEndian = 0x01,
PKCS7 = 0x02,
IncludeChain = 0x04

Guide_SIGAPI_20210108_ENG 173

7.77.3.1 Implementation in C#
byte[] signature = null;
try
{
 signature = stPad.RSASign(RSAScheme.PSS,
HashValue.Combination, SignFlag.None);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.77.3.2 Implementation in Visual Basic
Dim signature() As Byte
Try
 signature = STPad.RSASign(RSAScheme.PSS,
HashValue.Combination, SignFlag.None)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 RSASetSignPassword method
This method protects against unauthorised signing via RSASign() by keeping a password, which is
required for the process, protected in the memory of the pad. The RSASignPasswordLength
property can be used to specify a minimum password length if the certificate is stored by
RSASetSigningCert() or RSAGenerateSigningCert() .
The password protection works with the Sigma model from firmware 2.13, the Zeta model from
firmware 1.0, the Omega model from firmware 2.17, the Gamma model from firmware 1.32 and the Delta
model from firmware 1.31.

Parameter Values I/O Description
LPCWSTR
bstrNewPassword

LPCWSTR
szNewPassword

SecureString
newPassword

ByVal newPassword
As SecureString

NULL I Password protection is cancelled. Not possible if a
minimum password length has been specified.

max. 32
charact
ers

I Previous password in the form of a hexadecimal
character string (all digits and the letters a – e are
valid; upper and lower case are ignored)

LPCWSTR
bstrOldPassword

LPCWSTR
szOldPassword

SecureString
oldPassword

ByVal oldPassword
As SecureString

NULL I The device is not password protected as yet.
max. 32
charact
ers

I Previous password in the form of a hexadecimal
character string (all digits and the letters a – e are
valid; upper and lower case are ignored)

LONG
nMaxWrongEntries

0 I Infinite number of wrong entries are possible when
calling RSASignPw()

1 -
10

I Number of permitted wrong entries in succession
when calling RSASignPw() before the signing
certificate is blocked. Once exceeded, signing is only
possible again after a re-import by
RSASetSigningCert() or regeneration by
RSAGenerateSigningCert(). Blank passwords
or the use of RSASign() do not increment the
counter.

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.78.1 STPadCapt.ocx
Available from Version 8.4.3 onwards.
LONG RSASetSignPassword(LPCWSTR bstrNewPassword, LPCWSTR
bstrOldPassword, LONG nMaxWrongEntries)

7.78.1.1 Implementation in C#
int nResult = axSTPadCapt1.RSASetSignPassword("0e", "", 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nReturn);

7.78.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1. RSASetSignPassword("0e",
"", 0)
If nReturn < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

Guide_SIGAPI_20210108_ENG 175

7.78.2 STPadLib.dll
Available from Version 8.4.3 onwards.
LONG STRSASetSignPassword(LPCWSTR szNewPassword, LPCWSTR szOldPassword,
LONG nMaxWrongEntries)

7.78.2.1 Implementation in C++
LONG nRc = STRSASetSignPassword(L"0e", L"", 0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

7.78.3 STPadLibNet.dll
Available from Version 8.4.3 onwards.
void RSASetSignPassword(System.Security.SecureString newPassword,
System.Security.SecureString oldPassword, long maxWrongEntries)

Sub RSASetSignPassword(ByRef newPassword As
System.Security.SecureString, ByRef oldPassword As
System.Security.SecureString, ByRef maxWrongEntries As long)

7.78.3.1 Implementation in C#
SecureString passwordNew = new SecureString();
passwordNew.AppendChar('0');
passwordNew.AppendChar('e');
SecureString passwordOld = new SecureString();
try
{
 stPad.RSASetSignPassword(passwordNew, passwordOld, 0);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.78.3.2 Implementation in Visual Basic
Dim passwordNew As SecureString = New SecureString()
passwordNew.AppendChar('0')
passwordNew.AppendChar('e')
Dim passwordOld As SecureString = New SecureString()
Try
 STPad.RSASetSignPassword(passwordNew, passwordOld, 0)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 RSASetEncryptionCert/RSASetEncryptionCertPw method
This method imports a public X.509 certificate and permanently stores the public RSA key and the
certificate ID (‘Issuer’ and ‘Serial Number’) in the signature device. This key is used for the encryption of
biometric data (see also RSAGetSignData()).
It is possible to disable this functionality permanently inside the device. It can also be protected with a
password. Please refer to your contact at signotec as required.
With the Sigma model this method only works from firmware 1.16. With the Omega model, it only works
from firmware 1.25.

Parameter Values I/O Description
VARIANT& vaCert

BYTE* pbtCert

X509Certificate2
cert

string cert

ByVal cert As
X509Certificate2

ByVal cert As
String

!=
NULL

I Public X.509 certificate from the memory or a file; if
the device property “Supports4096BitKeys” has
been set, the pad will support all multiples of 8
within the range of 1024 to 4096 as certificate
length. Otherwise only the values 1024 and 2048
bit are supported. See also
DeviceGetCapabilities().

NULL I The key is deleted from the signature device without
storing a new key; subsequently, it is no longer
possible to call up the RSAGetSignData()
method.

LONG nSize 0 I The pbtCert pointer is a WCHAR* type and points
to the certificate file path or URL.

> 0 I Size of transferred byte array
BSTR
bstrDevicePasswor
d

LPCWSTR
szDevicePassword

SecureString
devicePassword

ByVal
devicePassword As
SecureString

max. 32
charact

ers

I Password of the device (if it is password protected);
please refer to your contact at signotec for details

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.79.1 STPadCapt.ocx
Available from Version 8.0.26 onwards. The status described is available from Version 8.2.0 onwards.
LONG RSASetEncryptionCert(VARIANT& vaCert)

LONG RSASetEncryptionCertPw(VARIANT& vaCert, BSTR bstrDevicePassword)
Note: The vaCert parameter must contain a byte array or a string.

7.79.1.1 Implementation in C#
Work in the memory:
X509Certificate2 cert = new X509Certificate2(@"C:\Cert.cer");
int nResult = axSTPadCapt1.RSASetEncryptionCert
(cert.Export(X509ContentType.Cert));
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

Work with files:
int nResult = axSTPadCapt1.RSASetEncryptionCert(@"C:\Cert.cer");
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

Guide_SIGAPI_20210108_ENG 177

7.79.1.2 Implementation in Visual Basic
Work in the memory:
Dim cert As X509Certificate2 = New X509Certificate2("C:\Cert.cer")
Dim nResult As Integer = AxSTPadCapt1.RSASetEncryptionCert _
(cert.Export(X509ContentType.Cer))
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

Work with files:
Dim nResult As Integer =
AxSTPadCapt1.RSASetEncryptionCert("C:\Cert.cer")
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

7.79.2 STPadLib.dll
Available from Version 8.0.26 onwards. The status described is available from Version 8.2.0 onwards.
LONG STRSASetEncryptionCert(BYTE* pbtCert, LONG nSize)

LONG STRSASetEncryptionCertPw(BYTE* pbtCert, LONG nSize, LPCWSTR
szDevicePassword)

7.79.2.1 Implementation in C++
Work in the memory:
long nResult = STRSASetEncryptionCert(&btCert, sizeof(btCert));
if (nResult < 0)
 AfxMessageBox(L"Error!");

Work with files:
long nResult = STRSASetEncryptionCert((BYTE*)L"C:\\Cert.cer", 0);
if (nResult < 0)
 AfxMessageBox(L"Error!");

7.79.3 STPadLibNet.dll
Available from Version 8.0.26 onwards. The status described is available from Version 8.4.2 onwards.

Guide_SIGAPI_20210108_ENG 178

void RSASetEncryptionCert
(System.Security.Cryptography.X509Certificates.X509Certificate2 cert)

void RSASetEncryptionCert(string cert)

void RSASetEncryptionCert()

void RSASetEncryptionCertPw
(System.Security.Cryptography.X509Certificates.X509Certificate2 cert,
System.Security.SecureString devicePassword)

void RSASetEncryptionCertPw(string cert, System.Security.SecureString
devicePassword)

void RSASetEncryptionCertPw(System.Security.SecureString devicePassword)

Sub RSASetEncryptionCert(ByVal cert As
System.Security.Cryptography.X509Certificates.X509Certificate2)

Sub RSASetEncryptionCert(ByVal cert As System.Security.SecureString)

Sub RSASetEncryptionCert()

Sub RSASetEncryptionCertPw(ByVal cert As
System.Security.Cryptography.X509Certificates.X509Certificate2, ByVal
devicePassword As System.Security.SecureString)

Sub RSASetEncryptionCertPw(ByVal cert As String, ByVal devicePassword As
System.Security.SecureString)

Sub RSASetEncryptionCertPw(ByVal devicePassword As
System.Security.SecureString)

7.79.3.1 Implementation in C#
Work in the memory:
try
{
 stPad.RSASetEncryptionCert(new
X509Certificate2(@"C:\Cert.cer"));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Work with files:
try
{
 stPad.RSASetEncryptionCert(@"C:\Cert.cer");
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Guide_SIGAPI_20210108_ENG 179

7.79.3.2 Implementation in Visual Basic
Work in the memory:
Try
 STPad.RSASetEncryptionCert(New
X509Certificate2("C:\Cert.cer"))
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Work with files:
Try
 STPad.RSASetEncryptionCert("C:\Cert.cer")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 RSAGetEncryptionCertId method
This method exports the ID of the public key that is stored in the signature device and used for the
encryption of biometric data. The ID is a character string consisting of the ‘Issuer’ and ‘Serial Number’ of
the certificate in hexadecimal representation that has been transferred when saving the key, e.g.,
‘example certificate (ff 0a)’
With the Sigma model this method only works from firmware 1.16. With the Omega model, it only works
from firmware 1.25.

Parameter Values I/O Description
LPCWSTR szId NULL I The method returns the length of the ID in the

pnStringLength parameter
!=
NULL

I/O Array in which the ID is to be written; if the array is
too small, the end characters are cut off

LONG*
pnStringLength

>= 0 I/O Length of the ID string incl. terminated 0 or size of
the szId array in bytes

Return value Values Description
BSTR empty Error

other ID of the public key
LONG 0 Method was executed successfully

< 0 Error
String !=

NULL
ID of the public key

7.80.1 STPadCapt.ocx
Available from Version 8.0.26 onwards.
BSTR RSAGetEncryptionCertId()

7.80.1.1 Implementation in C#
string strId = = axSTPadCapt1.RSAGetEncryptionCertId();
if (strId == null)
 MessageBox.Show(String.Format("Error");
else
 MessageBox.Show(String.Format("The cert ID is: {0}", strId));

7.80.1.2 Implementation in Visual Basic
Dim strId As String = AxSTPadCapt1.RSAGetEncryptionCertId()
If btSignature Is Nothing Then
 MsgBox("Error")

Guide_SIGAPI_20210108_ENG 180

Else
 MsgBox("The cert ID is: " & strId)
End If

7.80.2 STPadLib.dll
Available from Version 8.0.26 onwards.
LONG STRSAGetEncryptionCertId(LPCWSTR szId, LONG* pnStringLength)

7.80.2.1 Implementation in C++
long nLen = 0;
long nResult = STRSAGetEncryptionCertId(NULL, &nLen);
if (nResult > 0)
{
 WCHAR* szId = new WCHAR[nLen / sizeof(WCHAR)];
 nResult = STRSAGetEncryptionCertId(szId, &nLen);
 if (nResult > 0)
 {
 WCHAR* szText = new WCHAR[nLen / sizeof(WCHAR) + 64];
 swprintf_s(szText, nLen / sizeof(WCHAR) + 64, L" The cert
ID is: %s", szId);
 AfxMessageBox(szText);
 delete [] szText;
 }
 delete [] szId;
 }
if (nResult < 0)
 AfxMessageBox(L"Error!");

7.80.3 STPadLibNet.dll
Available from Version 8.0.26 onwards.
string RSAGetEncryptionCertId()

Function RSAGetEncryptionCertId() As String

7.80.3.1 Implementation in C#
try
{
 string strId = stPad.RSAGetEncryptionCertId();
 MessageBox.Show(String.Format("The cert ID is: {0}", strId));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.80.3.2 Implementation in Visual Basic
Try
 Dim strId As String = STPad.RSAGetEncryptionCertId()
 MsgBox("The cert ID is: " & strId)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Guide_SIGAPI_20210108_ENG 181

 RSAGetSignData method
This method returns the digitalised signature in RSA encrypted SignData format. Encryption is carried
out in the signature device using the key that has been saved in the device using the
RSASetEncryptionCert()method.
This SignData format cannot be visualised by other signotec components, such as signview.dll; rather, it
must first be decrypted again using the RSADecryptSignData() method. In order to access data
directly in conventional SignData format, please use the SignatureGetSignData() method.
The data is returned in compressed format by default and consequently hash 2 can only be calculated
on the basis of the biometric data using the RSAExtractExtraData() method. In order to be able
to calculate hash 2 independently, data can also be returned in uncompressed format; please note the
sample code in this respect.
This method discards a hash 1 that was calculated with the RSACreateDisplayHash() method and
ends content signing. The signing of data using the RSASign() method must therefore take place
beforehand.
With the Sigma model this method only works from firmware 1.16. With the Omega model, it only works
from firmware 1.25.

Parameter Values I/O Description
BYTE* pbtSignData NULL I The method returns the required size of the array in

the pnSize parameter.
other I/O Array (in the required size) in which the SignData is

written; pnSize must correspond to the value
returned for the previous call.

LONG* pnSize > 0 I/O Size of the array (in bytes) in which the SignData is
to be written

LONG nOptions

SignDataGetFlag
options

ByVal options As
SignDataGetFlag

Bitmask containing one or more hexadecimal values from the
following list:
0x01 I The data is returned in uncompressed format

Return value Values Description
VARIANT empty Error

other Signature in SignData format as a byte array
LONG 0 Method was executed successfully

< 0 Error
byte[]

Byte()

!=
NULL

Signature in SignData format

7.81.1 STPadCapt.ocx
Available from Version 8.0.26 onwards.
VARIANT RSAGetSignData(LONG nOptions)

7.81.1.1 Implementation in C#
Reading compressed SignData:
byte[] btSignData = (byte[])axSTPadCapt1.RSAGetSignData(0);
if (btSignData == null)
{
 MessageBox.Show(String.Format("Error"));
 return;
}

Guide_SIGAPI_20210108_ENG 182

Reading uncompressed SignData and extraction of data from which hash 2 has been calculated:
byte[] btSignData = (byte[])axSTPadCapt1.RSAGetSignData(1);
if (btSignData == null)
{
 MessageBox.Show(String.Format("Error"));
 return;
}
int nOffset = BitConverter.ToInt16(btSignData, 28) + 32;
nOffset += BitConverter.ToInt32(btSignData, nOffset);
byte[] btHash2Data = new byte[btSignData.Length - nOffset];
Array.Copy(btSignData, nOffset, btHash2Data, 0,
btHash2Data.Length);

7.81.1.2 Implementation in Visual Basic
Reading compressed SignData:
Dim btSignData As Byte() = AxSTPadCapt1.RSAGetSignData(0)
If btSignData Is Nothing Then
 MsgBox("Error")
 Exit Sub
End If

Reading uncompressed SignData and extraction of data from which hash 2 has been calculated:
Dim btSignData As Byte() = AxSTPadCapt1.RSAGetSignData(1)
If btSignData Is Nothing Then
 MsgBox("Error")
 Exit Sub
End If
Dim nOffset As Integer = BitConverter.ToInt16(btSignData, 28) + 32
nOffset += BitConverter.ToInt32(btSignData, nOffset)
Dim btHash2Data(btSignData.Length - nOffset) As Byte
Array.Copy(btSignData, nOffset, btHash2Data, 0,
btHash2Data.Length)

7.81.2 STPadLib.dll
Available from Version 8.0.26 onwards.
LONG STRSAGetSignData(BYTE* pbtSignData, LONG* pnSize, LONG nOptions)
The following values defined in the header file can be used for the nOptions parameter:
#define STPAD_GETSIGNDATA_UNCOMPRESSED 0x01

7.81.2.1 Implementation in C++
Reading compressed SignData:
long nSize = 0;
long nResult;
nResult = STRSAGetSignData(NULL, &nSize, 0);
BYTE* pbtSignData = NULL;
if (nResult == 0)
{
 pbtSignData = new BYTE[nSize];
 nResult = STRSAGetSignData(pbtSignData, &nSize,
STPAD_GETSIGNDATA_UNCOMPRESSED);
}
if (nResult < 0)
 AfxMessageBox(L"Error!");

Guide_SIGAPI_20210108_ENG 183

Reading uncompressed SignData and extraction of data from which hash 2 has been calculated:
long nSize = 0;
long nResult;
nResult = STRSAGetSignData(NULL, &nSize,
STPAD_GETSIGNDATA_UNCOMPRESSED);
BYTE* pbtSignData = NULL;
if (nResult == 0)
{
 pbtSignData = new BYTE[nSize];
 nResult = STRSAGetSignData(pbtSignData, &nSize,
STPAD_GETSIGNDATA_UNCOMPRESSED);
}
if (nResult < 0)
 AfxMessageBox(L"Error!");
int nOffset = *((short*)(&btSignData[28])) + 32;
nOffset += *((int*)(&btSignData[nOffset]));
BYTE* pbtHash2Data = new BYTE[nSize - nOffset];
memcpy(pbtHashData, &btSignData[nOffset], nSize – nOffset);

7.81.3 STPadLibNet.dll
Available from Version 8.0.26 onwards.
byte[] RSAGetSignData(signotec.STPadLibNet.SignDataGetFlag options)

Function RSAGetSignData() As Byte(ByVal options As
signotec.STPadLibNet.SignDataGetFlag)
The SignDataGetFlag enumeration is defined as follows:
None = 0x00,
Uncompressed = 0x01

7.81.3.1 Implementation in C#
Reading compressed SignData:
byte[] btSignData;
try
{
 btSignData = stPad.RSAGetSignData(SignDataGetFlag.None);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Guide_SIGAPI_20210108_ENG 184

Reading uncompressed SignData and extraction of data from which hash 2 has been calculated:
byte[] btSignData;
try
{
 btSignData =
stPad.RSAGetSignData(SignDataGetFlag.Uncompressed);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}
int nOffset = BitConverter.ToInt16(btSignData, 28) + 32;
nOffset += BitConverter.ToInt32(btSignData, nOffset);
byte[] btHash2Data = new byte[btSignData.Length - nOffset];
Array.Copy(btSignData, nOffset, btHash2Data, 0,
btHash2Data.Length);

7.81.3.2 Implementation in Visual Basic
Reading uncompressed SignData:
Dim btSignData() As Byte
Try
 btSignData =
STPad.RSAGetSignData(SignDataGetFlag.Uncompressed)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Reading uncompressed SignData and extraction of data from which hash 2 has been calculated:
Dim btSignData() As Byte
Try
 btSignData =
STPad.RSAGetSignData(SignDataGetFlag.Uncompressed)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try
Dim nOffset As Integer = BitConverter.ToInt16(btSignData, 28) + 32
nOffset += BitConverter.ToInt32(btSignData, nOffset)
Dim btHash2Data(btSignData.Length - nOffset) As Byte
Array.Copy(btSignData, nOffset, btHash2Data, 0,
btHash2Data.Length)

 RSADecryptSignData method
This method decrypts RSA encrypted SignData as delivered by RSAGetSignData() and converts it
into the conventional SignData format, as expected by other signotec components such as signview.dll
for example. Additional data, which is included where appropriate, but cannot be converted, can also be
decrypted.
Note: This method should not be used to read out the remaining data. Please use the
RSAExtractExtraData() method instead.

Parameter Values I/O Description
VARIANT&
vaEncrypted

BYTE*
pbtEncrypted

byte[] encrypted

ByVal encrypted
As Byte()

!=
NULL

I Byte array with RSA encrypted SignData

NULL I Obsolete, please use the
RSAExtractExtraData() method instead

LONG
nEncryptedSize

>= 0 I Size of the array that is referenced by
pbtEncrypted in bytes

BYTE*
pbtDecrypted

NULL I The method returns the required size of the array in
the pnDecryptedSize parameter

!=
NULL

I/O Array in the required size in which the decrypted
SignData is written; pnDecryptedSize must
correspond to the value returned for the previous
call

LONG
pnDecryptedSize

> 0 I/O Size of the array in which the decrypted SignData is
to be written

VARIANT& vaCert

BYTE* pbtCert

X509Certificate2
cert

string cert

ByVal cert As
X509Certificate2

ByVal cert As
String

!=
NULL

I Certificate in PKCS#12 format from the memory or a
file

NULL I Obsolete, please use the
RSAExtractExtraData() method instead

LONG nCertSize 0 I The pbtCert pointer is a WCHAR* type and points
to the certificate file path or URL.

> 0 I Size of transferred byte array
BSTR bstrPassword

LPCWSTR
szPassword

SecureString
password

ByVal password As
SecureString

all I Password used to fetch the private key

LONG* pnExtraData

SignDataDecryptFl
ag extraData

ByVal extraData
As
SignDataDecryptFl
ag

A bitmask, which may contains one or more hexadecimal values from
the following list and which defines which of the RSA encrypted
SignData shall also be decrypted in order to retrieve them when the
method RSAExtractExtraData() is called subsequently.
On method return, it indicates which additional data have been
decrypted and temporarily stored. For details, please see the
description of the RSAExtractExtraData() method.
0x01 I/O Timestamp
0x02 I/O Serial number
0x04 I/O Key source

Guide_SIGAPI_20210108_ENG 186

0x08 I/O Firmware version
0x10 I/O Hash 1
0x20 I/O Hash 2

Return value Values Description
VARIANT empty Error

other Decrypted SignData
LONG 0 Method was executed successfully

< 0 Error
byte[]

Byte()

!=
NULL

Decrypted SignData

7.82.1 STPadCapt.ocx
Available from Version 8.0.26 onwards. The status described is available from Version 8.5.1 onwards.
VARIANT RSADecryptSignData(VARIANT& vaEncrypted, VARIANT& vaCert, BSTR
bstrPassword, LONG* pnExtraData)
Note: The vaEncrypted parameter must contain a byte array and the vaCert parameter must
contain a byte array or a string.

7.82.1.1 Implementation in C#
Work in the memory:
X509Certificate2 cert = new X509Certificate2(@"C:\Cert.pfx",
"password", X509KeyStorageFlags.Exportable);
int nExtraData = 0x3f;
byte[] btSignData = axSTPadCapt1.RSADecryptSignData(btEncrypted,
cert.Export(X509ContentType.Pkcs12), "password", ref nExtraData);
if (btSignData == null)
{
 MessageBox.Show(String.Format("Error"));
 return;
}

Work with files:
int nExtraData = 0x3f;
byte[] btSignData = axSTPadCapt1.RSADecryptSignData(btEncrypted,
@"C:\Cert.pfx", "password", ref nExtraData);
if (btSignData == null)
{
 MessageBox.Show(String.Format("Error"));
 return;
}

The remaining data can then be queried using the RSAExtractExtraData() method.

7.82.1.2 Implementation in Visual Basic
Work in the memory:
Dim cert As X509Certificate2 = New X509Certificate2("C:\Cert.pfx",
_ "password", X509KeyStorageFlags.Exportable)
Dim nExtraData As Integer = &H3F
Dim btSignData() As Byte
btSignData = AxSTPadCapt1.RSADecryptSignData(btEncrypted, _
cert.Export(X509ContentType.Pkcs12), "password", nExtraData)
If btSignData Is Nothing Then
 MsgBox("Error")
 Exit Sub
End If

Guide_SIGAPI_20210108_ENG 187

Work with files:
Dim nExtraData As Integer = &H3F
Dim btSignData() As Byte
btSignData = AxSTPadCapt1.RSADecryptSignData(btEncrypted, _
"C:\Cert.pfx", "password", nExtraData)
If btSignData Is Nothing Then
 MsgBox("Error")
 Exit Sub
End If

The remaining data can then be queried using the RSAExtractExtraData() method.

7.82.2 STPadLib.dll
Available from Version 8.0.26 onwards. The status described is available from Version 8.5.1 onwards.
LONG STRSADecryptSignData(BYTE* pbtEncrypted, LONG nEncryptedSize, BYTE*
pbtDecrypted, LONG* pnDecryptedSize, BYTE* pbtCert, LONG nCertSize,
LPCWSTR szPassword, LONG* pnExtraData)
The following values defined in the header file can be used for the pnExtraData parameter:
#define STPAD_DECRYPTSIGNDATA_TIMESTAMP 0x01
#define STPAD_DECRYPTSIGNDATA_SERIAL 0x02
#define STPAD_DECRYPTSIGNDATA_KEYSOURCE 0x04
#define STPAD_DECRYPTSIGNDATA_FIRMWARE 0x08
#define STPAD_DECRYPTSIGNDATA_HASH1 0x10
#define STPAD_DECRYPTSIGNDATA_HASH2 0x20
#define STPAD_DECRYPTSIGNDATA_ALL 0x3F

7.82.2.1 Implementation in C++
Work in the memory:
long nSize = 0;
long nExtraData = STPAD_DECRYPTSIGNDATA_ALL;
long nResult = STRSADecryptSignData(&btEncrypted,
sizeof(btEncrypted), NULL, &nSize, &btCert, sizeof(btCert),
L"password", &nExtraData);
BYTE* pbtSignData = NULL;
if (nResult == 0)
{
 pbtSignData = new BYTE[nSize];
 nResult = STRSADecryptSignData(&btEncrypted,
sizeof(btEncrypted), pbtSignData, &nSize, &btCert, sizeof(btCert),
L"password", &nExtraData);
}
if (nResult < 0)
 AfxMessageBox(L"Error!");

Guide_SIGAPI_20210108_ENG 188

Work with files:
long nSize = 0;
long nExtraData = STPAD_DECRYPTSIGNDATA_ALL;
long nResult = STRSADecryptSignData(&btEncrypted,
sizeof(btEncrypted), NULL, &nSize, (BYTE*)L"C:\\Cert.pfx", 0,
L"password", &nExtraData);
BYTE* pbtSignData = NULL;
if (nResult == 0)
{
 pbtSignData = new BYTE[nSize];
 nResult = STRSADecryptSignData(&btEncrypted,
sizeof(btEncrypted), pbtSignData, &nSize, (BYTE*)L"C:\\Cert.pfx",
0, L"password", &nExtraData);
}
if (nResult < 0)
 AfxMessageBox(L"Error!");

The remaining data can then be queried using the RSAExtractExtraData() method.

7.82.3 STPadLibNet.dll
Available from Version 8.0.26 onwards. The status described is available from Version 8.5.1 onwards.
byte[] RSADecryptSignData(byte[] encrypted,
System.Security.Cryptography.X509Certificates.X509Certificate2 cert,
System.Security.SecureString password, ref
signotec.STPadLibNet.SignDataDecryptFlag extraData)

byte[] RSADecryptSignData(byte[] encrypted, string cert,
System.Security.SecureString password, ref
signotec.STPadLibNet.SignDataDecryptFlag extraData)

byte[] RSADecryptSignData(ref signotec.STPadLibNet.SignDataDecryptFlag
extraData)

Function RSADecryptSignData(ByVal encrypted As Byte(), ByVal cert As
System.Security.Cryptography.X509Certificates.X509Certificate2, ByVal
password As System.Security.SecureString, ByRef extraData As
signotec.STPadLibNet.SignDataDecryptFlag) As Byte()

Function RSADecryptSignData(ByVal encrypted As Byte(), ByVal cert As
String, ByVal password As System.Security.SecureString, ByRef extraData
As signotec.STPadLibNet.SignDataDecryptFlag) As Byte()

Function RSADecryptSignData(ByRef encrypted As
signotec.STPadLibNet.SignDataDecryptFlag) As Byte()
The SignDataDecryptFlag enumeration is defined as follows:
None = 0x00,
Timestamp = 0x01,
Serial = 0x02,
KeySource = 0x04,
Firmware = 0x08,
Hash1 = 0x10,
Hash2 = 0x20,
All = 0x3f

Guide_SIGAPI_20210108_ENG 189

7.82.3.1 Implementation in C#
Work in the memory:
SecureString password = new SecureString();
password.AppendChar('p');
password.AppendChar('w');
X509Certificate2 cert = new X509Certificate2(@"C:\Cert.pfx",
password, X509KeyStorageFlags.Exportable);
SignDataDecryptFlag extraData = SignDataDecryptFlag.All;
byte[] signData = null;
try
{
 signData = stPad.RSADecryptSignData(encrypted, cert, password,
ref extraData);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}
password.Dispose();

Work with files:
SecureString password = new SecureString();
password.AppendChar('p');
password.AppendChar('w');
SignDataDecryptFlag extraData = SignDataDecryptFlag.All;
byte[] signData = null;
try
{
 signData = stPad.RSADecryptSignData(encrypted, @"C:\Cert.pfx",
password, ref extraData);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

The remaining data can then be queried using the RSAExtractExtraData() method.

7.82.3.2 Implementation in Visual Basic
Work in the memory:
Dim password As SecureString = New SecureString()
password.AppendChar("p")
password.AppendChar("w")
Dim cert As X509Certificate2 = New X509Certificate2("C:\Cert.pfx",
_ password, X509KeyStorageFlags.Exportable)
Dim extraData As SignDataDecryptFlag = SignDataDecryptFlag.All;
Dim signData As Byte() = Nothing
Try
 signData = STPad.RSADecryptSignData(encrypted, cert, password,
_ extraData)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try
password.Dispose()

Guide_SIGAPI_20210108_ENG 190

Work with files:
Dim password As SecureString = New SecureString()
password.AppendChar("p")
password.AppendChar("w")
Dim extraData As SignDataDecryptFlag = SignDataDecryptFlag.All;
Dim signData As Byte() = Nothing
Try
 signData = STPad.RSADecryptSignData(encrypted, "C:\Cert.pfx",
_ password, extraData)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try
password.Dispose()

The remaining data can then be queried using the RSAExtractExtraData() method.

 RSAExtractExtraData method
This method extracts the extra data contained in the RSA encrypted SignData, alongside the actual
biometric data, as delivered by RSAGetSignData(). This data is partially encrypted.
If only the unencrypted contained data are to be extracted (serial number, key source, device options,
firmware version, hash 2), this method can be called with RSA encrypted SignData. If encrypted
contained data are to be extracted as well, it is necessary to call the RSADecryptSignData()
method in advance. RSAExtractExtraData() must then be called without SignData and it will
return the data stored temporarily by the RSADecryptSignData() method. Calling without
SignData without previously calling the RSADecryptSignData() method results in an error.
Note: In all cases, calling this method deletes any data stored temporarily by the
RSADecryptSignData() method.

Parameter Values I/O Description
LONG
nHash2Algorithm

HashAlgo
hash2Algorithm

ByVal
hash2Algorithm As
HashAlgo

Algorithm that is to be used to calculate the biometric hash (hash 2);
as it is contained in the SignData in encrypted form and decrypted by
RSADecryptSignData(), is only has to be transmitted when
calling with SignData.
It must always correspond to the algorithm that was used for the
original signing procedure, as otherwise it is not possible to check the
signature.

0 I SHA-1
1 I SHA-256
2 I SHA-512

EXTRADATA*
pExtraData

!=
NULL

I/O Pointer to structure to which the extracted data are
written (for details, see below); for member hash2,
the member hashalgo must be filled when calling
with SignData (for meaning, see above)

VARIANT&
vaSignData

BYTE* pbtSignData

byte[] signData

ByVal signData As
Byte()

!=
NULL

I Byte array with RSA encrypted SignData

NULL I The method returns all extra data stored temporarily
by a previous call of the
RSADecryptSignData() method

Guide_SIGAPI_20210108_ENG 191

LONG
nSignDataSize

0 I Size of the array that is referenced by
pbtSignData in bytes

Return value Values Description
VARIANT empty Error

other Exported extra data as byte array (for details, see below)
LONG 0 Method was executed successfully

< 0 Error
ExtraData !=

NULL
Class instance from which the extra data can be read (for
details see below)

The following information may be contained in the extra data:
Information Description
Timestamp Time stamp of the signature in seconds since 1 January 1970 in UTC
Serial number Serial number of the signature device, with which the data was captured
Key source Origin of the key used for signing

0=key generated in the device
1=externally generated key loaded in the device
2=key saved as default setting

Device options Device options of the signature device; please refer to your contact at
signotec for details.

Firmware version Firmware version of the signature device, with which the data was
captured.

Hash 1 Hash 1, which has been specified by RSASetHash() at the start of the
signature process.

Hash 2 Hash 2 of the biometric data; this hash is not contained directly in the
SignData but is calculated from the data.

How this information can be read from the extra data is described in the following sections.

7.83.1 STPadCapt.ocx
Available from Version 8.5.1 onwards.
VARIANT RSAExtractExtraData(LONG nHash2Algorithm, VARIANT& vaSignData)
Note: The vaHash parameter must contain a byte array.
The returned byte array always has the same structure. The individual pieces of information must
therefore be interpreted on the basis of the following offsets as shown. If the particular piece of
information has not been extracted, the specified invalid value will be contained.

Information Offset Data type Invalid value
Timestamp 0

8 bytes, little endian, unsigned 0xFFFFFFFFFFFFFF

FF (-1)
Serial number 8

4 bytes, little endian, unsigned 0xFFFFFFFF

(4294967295)
Key source 12 4 bytes, little endian, unsigned 0xFFFFFFFF

(4294967295)
Firmware version
 Major 20

4 bytes, little endian, unsigned 0xFFFFFFFF

(4294967295)
Minor 24

4 bytes, little endian, unsigned 0xFFFFFFFF

(4294967295)
Hash 1
 Algorithm 28

4 bytes, little endian, unsigned 0xFFFFFFFF

(4294967295)

Guide_SIGAPI_20210108_ENG 192

Hash 32 64 bytes, byte array; the actual length
of the hash is dependent on the
algorithm:
0 (SHA-1) = 20 bytes
1 (SHA-256) = 32 bytes
2 (SHA-512) = 64 bytes

-

Hash 2
 Algorithm 96

4 bytes, little endian, unsigned 0xFFFFFFFF

(4294967295)
Hash 100 64 bytes, byte array; the actual length

of the hash is dependent on the
algorithm:
0 (SHA-1) = 20 bytes
1 (SHA-256) = 32 bytes
2 (SHA-512) = 64 bytes

-

7.83.1.1 Implementation in C#
Use without decryption:
byte[] extraData =
(byte[])axSTPadCapt1.RSAExtractExtraData(1, signData);
if (extraData == null)
 MessageBox.Show(String.Format("Error");

Use after previous decryption by RSADecryptSignData():
byte[] extraData = (byte[])axSTPadCapt1.RSAExtractExtraData(0,
null);
if (extraData == null)
 MessageBox.Show(String.Format("Error");

Guide_SIGAPI_20210108_ENG 193

The extra data can then be read as follows:
DateTime dateTime;
Int64 timeStamp = BitConverter.ToInt64(extraData, 0);
if (timestamp != -1)
 dateTime = new DateTime(1970, 1,
1).AddSeconds((double)timestamp);

UInt32 serial = BitConverter.ToUInt32(extraData, 8);

UInt32 keySource = BitConverter.ToUInt32(extraData, 12);

Version fwVersion = null;
UInt32 fwMajor = BitConverter.ToUInt32(extraData, 20);
UInt32 fwMinor = BitConverter.ToUInt32(extraData, 24);
if ((fwMajor != UInt32.MaxValue) && (fwMinor != UInt32.MaxValue))
 fwVersion = new Version(fwMajor, fwMinor);

byte[] hash1 = null;
switch (BitConverter.ToUInt32(extraData, 28))
{
 case 0:
 hash1 = new byte[20];
 break;
 case 1:
 hash1 = new byte[32];
 break;
 case 2:
 hash1 = new byte[64];
 break;
}
if (hash1 != null)
 Array.Copy(extraData, 32, hash1, 0, hash1.Length);

byte[] hash2 = null;
switch (BitConverter.ToUInt32(extraData, 96))
{
 case 0:
 hash2 = new byte[20];
 break;
 case 1:
 hash2 = new byte[32];
 break;
 case 2:
 hash2 = new byte[64];
 break;
}
if (hash2 != null)
 Array.Copy(extraData, 100, hash2, 0, hash2.Length);

Guide_SIGAPI_20210108_ENG 194

7.83.1.2 Implementation in Visual Basic
Use without decryption:
Dim extraData As Byte = axSTPadCapt1.RSAExtractExtraData(1,
signData)
If extraData Is Nothing Then
 MsgBox("Error ")
End If

Use after previous decryption by RSADecryptSignData():
Dim extraData As Byte = axSTPadCapt1.RSAExtractExtraData(0,
Nothing)
If extraData Is Nothing Then
 MsgBox("Error ")
End If

Guide_SIGAPI_20210108_ENG 195

The extra data can then be read as follows:
Dim dateTime As DateTime
Dim timeStamp As Int64 = BitConverter.ToInt64(extraData, 0)
If timeStamp <> -1 Then
 dateTime = New DateTime(1970, 1, 1).AddSeconds(timeStamp)
End If

Dim serial As UInt32 = BitConverter.ToUInt32(extraData, 8)

Dim keySource As UInt32 = BitConverter.ToUInt32(extraData, 12)

Dim fwVersion As Version
Dim fwMajor As UInt32 = BitConverter.ToUInt32(extraData, 20)
Dim fwMinor As UInt32 = BitConverter.ToUInt32(extraData, 24)
If ((fwMajor <> UInt32.MaxValue) And (fwMinor <> UInt32.MaxValue))
Then
 fwVersion = New Version(fwMajor, fwMinor)
End If

Dim hash1() As Byte = Nothing
Select Case BitConverter.ToUInt32(extraData, 28)
 Case 0
 hash1 = New Byte(19) {}
 Case 1
 hash1 = New Byte(31) {}
 Case 2
 hash1 = New Byte(63) {}
End Select
If Not hash1 Is Nothing Then
 Array.Copy(extraData, 32, hash1, 0, hash1.Length)
End If

Dim hash2() As Byte = Nothing
Select Case BitConverter.ToUInt32(extraData, 96)
 Case 0
 hash2 = New Byte(19) {}
 Case 1
 hash2 = New Byte(31) {}
 Case 2
 hash2 = New Byte(63) {}
End Select
If Not hash2 Is Nothing Then
 Array.Copy(extraData, 100, hash2, 0, hash2.Length)
End If

7.83.2 STPadLib.dll
Available from Version 8.5.1 onwards.
LONG STRSAExtractExtraData(EXTRADATA* pExtraData, BYTE*
pbtSignData=NULL, LONG nSignDataSize=0)
The individual pieces of information can be accessed in the returned EXTRADATA structure as follows. If
the particular piece of information has not been extracted, the specified invalid value will be contained.

Information Member Data type Invalid value

Guide_SIGAPI_20210108_ENG 196

Timestamp timestamp

__time64_t STPAD_EXTRADATA_NOTIME

Serial number serialnumber DWORD STPAD_EXTRADATA_NOVALUE
Key source keysource DWORD STPAD_EXTRADATA_NOVALUE
Firmware version
(major)

firmwaremejo
r

DWORD STPAD_EXTRADATA_NOVALUE

Firmware version
(minor)

firmwaremino
r

DWORD STPAD_EXTRADATA_NOVALUE

Hash 1 hash1 HASH -
 Algorithm hashalgo

HASHALGO STPAD_EXTRADATA_NOVALUE

Hash hash BYTE[64] -
Hash 2 hash2 HASH -
 Algorithm hashalgo

HASHALGO STPAD_EXTRADATA_NOVALUE

Hash hash BYTE[64] -
The EXTRADATA and HASH structures are defined as follows:
typedef struct EXTRADATA
{
 __time64_t timestamp;
 DWORD serialnumber;
 DWORD keysource;
 DWORD deviceoptions;
 DWORD firmwaremajor;
 DWORD firmwareminor;
 HASH hash1;
 HASH hash2;
} EXTRADATA;

typedef struct HASH
{
 HASHALGO hashalgo;
 BYTE hash[64];
} HASH;

The HASHALGO enumeration is defined as follows:
enum HASHALGO
{
 kSha1 = 0,
 kSha256 = 1,
 kSha512 = 2
};
The invalid values are defined as follows:
#define STPAD_EXTRADATA_NOTIME -1
#define STPAD_EXTRADATA_NOVALUE 0xFFFFFFFF

Guide_SIGAPI_20210108_ENG 197

7.83.2.1 Implementation in C++
Use without decryption:
EXTRADATA extraData;
memset(&extraData, 0xFF, (sizeof(EXTRADATA));
extraData.hash2.hashalgo = kSha256;
long nResult = STRSAExtractExtraData(&extraData, &btSignData,
sizeof(btSignData));
if (nResult < 0)
 AfxMessageBox(L"Error!");

Use after previous decryption by RSADecryptSignData():
EXTRADATA extraData;
memset(&extraData, 0xFF, (sizeof(EXTRADATA));
long nResult = STRSAExtractExtraData(&extraData);
if (nResult < 0)
 AfxMessageBox(L"Error!");

7.83.3 STPadLibNet.dll
Available from Version 8.5.1 onwards.
ExtraData RSAExtractExtraData(HashAlgo hash2Algorithm, byte[] signData)

ExtraData RSAExtractExtraData()

Function RSAExtractExtraData(ByVal hash2Algorithm As
signotec.STPadLibNet.HashAlgo, ByVal signData As Byte()) As ExtraData

Function RSAExtractExtraData() As ExtraData

The returned ExtraData class contains the individual pieces of information as properties. If the
particular piece of information has not been extracted, the specified invalid value will be contained.

Information Property Data type Invalid value
Timestamp TimeStamp

DateTime DateTime()

(01.01.0001,
0:00)

Serial number SerialNumbe
r

UInt32 0

Key source KeySource KeySource Unknown
Firmware version Firmware Version null

Nothing
Hash 1 Hash1 Hash null

Nothing
 Algorithm Algorithm HashAlgo -

Hash Data byte[]

Byte()

-

Hash 2 Hash1 Hash null

Nothing
 Algorithm Algorithm HashAlgo -

Hash Data byte[]

Byte()

-

The HashAlgo enumeration is defined as follows:
enum class HashAlgo
{
 SHA1 = 0,
 SHA256 = 1,

Guide_SIGAPI_20210108_ENG 198

 SHA512 = 2
};
The KeySource enumeration is defined as follows:
enum class KeySource
{
 Unknown = -1,
 Internal = 0,
 External = 1,
 Factory = 2
};

7.83.3.1 Implementation in C#
Use without decryption:
try
{
 ExtraData extraData =
stPad.RSAExtractExtraData(HashAlgo.SHA256, signData);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Use after previous decryption by RSADecryptSignData():
try
{
 ExtraData extraData = stPad.RSAExtractExtraData();
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.83.3.2 Implementation in Visual Basic
Use without decryption:
Try
 Dim extraData As ExtraData =
STPad.RSAExtractExtraData(HashAlgo.SHA256, signData)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Use after previous decryption by RSADecryptSignData():
Try
 Dim extraData As ExtraData = STPad.RSAExtractExtraData()
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 PDFLoad method
This method can be used to load a PDF document in order to subsequently display it on the signature
device using the DisplaySetPDF() method.
To be able to use this method, STPdfLib16.dll or STPdfLib13.dll must be in the application’s search path
or next to STPadCapt.ocx (if used).

Parameter Values I/O Description

Guide_SIGAPI_20210108_ENG 199

VARIANT&
vaDocument

BYTE* pbtDocument

byte[] document

string document

ByVal document As
Byte()

ByVal document As
String

!=
NULL

I PDF document from the memory or a file

NULL I The currently loaded PDF document is unloaded
from the memory

LONG nSize 0 I The pbtDocument pointer is a WCHAR* type and
points to the PDF file path or URL.

> 0 I Size of transferred array in bytes
BSTR bstrPassword

LPCWSTR
szPassword

SecureString
password

ByVal password As
SecureString

all I Password of the PDF document (optional)

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.84.1 STPadCapt.ocx
Available from Version 8.1.4 onwards.
LONG PDFLoad(VARIANT& vaDocument, LPCWSTR bstrPassword)

7.84.1.1 Implementation in C#
Work in the memory:
int nResult = axSTPadCapt1.PDFLoad(pdf, null);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

Work with files:
int nResult = axSTPadCapt1.PDFLoad(@"C:\Doc.pdf", null);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.84.1.2 Implementation in Visual Basic
Work in the memory:
Dim nResult As Integer = AxSTPadCapt1.PDFLoad(pdf, Nothing)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

Work with files:
Dim nResult As Integer = AxSTPadCapt1.PDFLoad("C:\Doc.pdf",
Nothing)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

Guide_SIGAPI_20210108_ENG 200

7.84.2 STPadLib.dll
Available from Version 8.1.4 onwards.
LONG STPDFLoad(BYTE* pbtDocument, LONG nSize, LPCWSTR szPassword)

7.84.2.1 Implementation in C++
Work in the memory:
int nResult = STPDFLoad(btDocument, sizeof(btDocument), NULL);
if (nResult < 0)
 AfxMessageBox(L"Error!");

Work with files:
int nResult = STPDFLoad((BYTE*)L"C:\\Doc.pdf", 0, NULL);
if (nResult < 0)
 AfxMessageBox(L"Error!");

7.84.3 STPadLibNet.dll
Available from Version 8.1.4 onwards. The status described is available from Version 8.4.2 onwards.
void PDFLoad()

void PDFLoad(byte[] document)

void PDFLoad(string document)

void PDFLoad(byte[] document, System.Security.SecureString password)

void PDFLoad(string document, System.Security.SecureString password)

Sub PDFLoad()

Sub PDFLoad(ByVal document As Byte())

Sub PDFLoad(ByVal document As String)

Sub PDFLoad(ByVal document As Byte(), ByVal password As
System.Security.SecureString)

Sub PDFLoad(ByVal document As String, ByVal password As
System.Security.SecureString)

7.84.3.1 Implementation in C#
Work in the memory:
try
{
 stPad.PDFLoad(pdf, (SecureString)null);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Work with files:
try
{
 stPad.PDFLoad(@"C:\Doc.pdf", (SecureString)null);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Guide_SIGAPI_20210108_ENG 201

7.84.3.2 Implementation in Visual Basic
Work in the memory:
Try
 STPad.PDFLoad(pdf, DirectCast(Nothing, SecureString))
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Work with files:
Try
 STPad.PDFLoad("C:\Doc.pdf", DirectCast(Nothing, SecureString))
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 PDFGetPageCount method
This method delivers the number of pages of the currently loaded PDF document.

Parameter Values I/O Description
- - - -
Return value Values Description
LONG

int

Integer

> 0 Number of pages
< 0 Error (not STPadLibNet.dll)

7.85.1 STPadCapt.ocx
Available from Version 8.1.4 onwards.
LONG PDFGetPageCount()

7.85.1.1 Implementation in C#
int nCount = axSTPadCapt1.PDFGetPageCount();
if (nCount < 0)
 MessageBox.Show(String.Format("Error {0}", nCount);
else
 MessageBox.Show(String.Format("The document has {0} pages.",
nCount);

7.85.1.2 Implementation in Visual Basic
Dim nCount As Integer = AxSTPadCapt1.PDFGetPageCount
If nCount < 0 Then
 MsgBox("Error " & CStr(nCount))
Else
 MsgBox("The document has " & CStr(nCount) & " pages.")
End If

7.85.2 STPadLib.dll
Available from Version 8.1.4 onwards.
LONG STPDFGetPageCount()

7.85.2.1 Implementation in C++
long nCount = STPDFGetPageCount();
WCHAR szText[64];
if (nCount < 0)

Guide_SIGAPI_20210108_ENG 202

 swprintf_s(szText, 64, L"Error %d", nCount);
else
 swprintf_s(szText, 64, L"The document has %d pages.", nCount);
AfxMessageBox(szText);

7.85.3 STPadLibNet.dll
Available from Version 8.1.4 onwards.
int PDFGetPageCount()

Function PDFGetPageCount() As Integer

7.85.3.1 Implementation in C#
try
{
 int nCount = stPad.PDFGetPageCount();
 MessageBox.Show(String.Format("The document has {0}
pages.",nCount));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.85.3.2 Implementation in Visual Basic
Try
 Dim nCount As Integer = STPad.PDFGetPageCount()
 MsgBox(The document has " & CStr(nCount) & " pages.")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 PDFGetWidth method
This method returns the width of a page of the currently loaded PDF document.

Parameter Values I/O Description
LONG nPage

int page

ByVal page As
Integer

> 0 I Number of the page whose width is to be returned
(starting at 1)

LONG nUnit

MEASUREMENTUNIT
nUnit

MeasurementUnit
unit

ByVal unit As
MeasurementUnit

0 I Pixels are used as the unit of measurement (based
on the display of the signature device used)

1 I Millimetres are used as the unit of measurement
2 I Inches are used as the unit of measurement

Return value Values Description
DOUBLE

double

Double

>= 0 Page width
< 0 Error (not STPadLibNet.dll)

7.86.1 STPadCapt.ocx
Available from Version 8.1.4 onwards.
DOUBLE PDFGetWidth(LONG nPage, LONG nUnit)

7.86.1.1 Implementation in C#
double dWidth = axSTPadCapt1.PDFGetWidth(1, 1);
if (dWidth < 0.0)
 MessageBox.Show(String.Format("Error {0}", (int)dWidth));
else
 MessageBox.Show(String.Format("The page has a width of {0}
millimetres.", dWidth));

7.86.1.2 Implementation in Visual Basic
Dim dWidth As Double = AxSTPadCapt1.PDFGetWidth(1, 1)
If dWidth < 0R Then
 MsgBox("Error " & CStr(dWidth))
Else
 MsgBox("The page has a width of " & CStr(dWidth) & "
millimetres.")
End If

7.86.2 STPadLib.dll
Available from Version 8.1.4 onwards.
LONG STPDFGetWidth(LONG nPage, MEASUREMENTUNIT nUnit)
The MEASUREMENTUNIT enumeration is defined as follows:
kPixels = 0,
kMillimetres = 1,
kInches = 2

Guide_SIGAPI_20210108_ENG 204

7.86.2.1 Implementation in C++
double dWidth = STPDFGetWidth(1, kMillimetres);
WCHAR szText[64];
if (dWidth < 0.)
 swprintf_s(szText, 64, L"Error %d", (int)dWidth);
else
 swprintf_s(szText, 64, L"The page has a width of %d
millimetres.", dWidth);

7.86.3 STPadLibNet.dll
Available from Version 8.1.4 onwards.
double PDFGetWidth(int page, MeasurementUnit unit)

Function PDFGetWidth(ByVal page as Integer, ByVal unit As
MeasurementUnit) As Double
The MeasurementUnit enumeration is defined as follows:
Pixels = 0,
Millimetres = 1,
Inches = 2

7.86.3.1 Implementation in C#
try
{
 double dWidth = stPad.PDFGetWidth(1,
MeasurementUnit.Millimetres);
 MessageBox.Show(String.Format("The page has a width of {0}
millimetres.", dWidth));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.86.3.2 Implementation in Visual Basic
Try
 Dim dWidth As Double
 dHeight = STPad.PDFGetWidth(1, MeasurementUnit.Millimetres)
 MsgBox("The page has a width of " & CStr(dWidth) & "
millimetres.")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 PDFGetHeight method
This method returns the height of a page of the currently loaded PDF document.

Parameter Values I/O Description
LONG nPage

int page

ByVal page As
Integer

> 0 I Number of the page whose height is to be returned
(starting at 1)

0 I Pixels are used as the unit of measurement (based
on the display of the signature device used)

1 I Millimetres are used as the unit of measurement

Guide_SIGAPI_20210108_ENG 205

LONG nUnit

MEASUREMENTUNIT
nUnit

MeasurementUnit
unit

ByVal unit As
MeasurementUnit

2 I Inches are used as the unit of measurement

Return value Values Description
DOUBLE

double

Double

>= 0 Page height
< 0 Error (not STPadLibNet.dll)

7.87.1 STPadCapt.ocx
Available from Version 8.1.4 onwards.
DOUBLE PDFGetHeight(LONG nPage, LONG nUnit)

7.87.1.1 Implementation in C#
double dHeight = axSTPadCapt1. PDFGetHeight(1, 1);
if (dHeight < 0.0)
 MessageBox.Show(String.Format("Error {0}", (int)dHeight));
else
 MessageBox.Show(String.Format("The page has a height of {0}
millimetres.", dHeight));

7.87.1.2 Implementation in Visual Basic
Dim dHeight As Double = AxSTPadCapt1.PDFGetHeight(1, 1)
If dHeight < 0R Then
 MsgBox("Error " & CStr(dHeight))
Else
 MsgBox("The page has a height of " & CStr(dHeight) & "
millimetres.")
End If

7.87.2 STPadLib.dll
Available from Version 8.1.4 onwards.
LONG STPDFGetHeight(LONG nPage, MEASUREMENTUNIT nUnit)
The MEASUREMENTUNIT enumeration is defined as follows:
kPixels = 0,
kMillimetres = 1,
kInches = 2

7.87.2.1 Implementation in C++
double dHeight = STPDFGetHeight(1, kMillimetres);
WCHAR szText[64];
if (dHeight < 0.)
 swprintf_s(szText, 64, L"Error %d", (int)dHeight);
else
 swprintf_s(szText, 64, L" The page has a height of %d
millimetres.", dHeight);

Guide_SIGAPI_20210108_ENG 206

7.87.3 STPadLibNet.dll
Available from Version 8.1.4 onwards.
double PDFGetHeight(int page, MeasurementUnit unit)

Function PDFGetHeight(ByVal page as Integer, ByVal unit As
MeasurementUnit) As Double
The MeasurementUnit enumeration is defined as follows:
Pixels = 0,
Millimetres = 1,
Inches = 2

7.87.3.1 Implementation in C#
try
{
 double dHeight = stPad.PDFGetHeight(1,
MeasurementUnit.Millimetres);
 MessageBox.Show(String.Format("The page has a height of {0}
millimetres.", dHeight));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.87.3.2 Implementation in Visual Basic
Try
 Dim dHeight As Double
 dHeight = STPad.PDFGetHeight(1, MeasurementUnit.Millimetres)
 MsgBox("The page has a height of " & CStr(dHeight) & "
millimetres.")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 PDFSelectRect method
This method can be used to specify an excerpt of a page of the currently loaded PDF document, which
can then be displayed on the signature device with the DisplaySetPDF() method. The full page is
always displayed by default.

Parameter Values I/O Description

Guide_SIGAPI_20210108_ENG 207

LONG nPage

int page

ByVal page As
Integer

all I Number of the page to be output (starting at 1)

DOUBLE dLeft

double left

ByVal left As
Double

>= 0 I Left border of the excerpt on the PDF page

DOUBLE dTop

double top

ByVal top As
Double

>= 0 I Upper border of the excerpt on the PDF page

DOUBLE dWidth

double width

ByVal width As
Double

>= 0 I Width of the excerpt (the excerpt may not be
outside of the page, the page width can be
determined using PDFGetWidth())

DOUBLE dHeight

double height

ByVal height As
Double

>= 0 I Height of the excerpt (the excerpt may not be
outside of the page, the page height can be
determined using PDFGetHeight())

LONG nUnit

MEASUREMENTUNIT
nUnit

MeasurementUnit
unit

ByVal unit As
MeasurementUnit

0 I Pixels are used as the unit of measurement (based
on the display of the signature device used)

1 I Millimetres are used as the unit of measurement
2 I Inches are used as the unit of measurement

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.88.1 STPadCapt.ocx
Available from Version 8.1.4 onwards.
LONG PDFSelectRect(LONG nPage, DOUBLE dLeft, DOUBLE dTop, DOUBLE dWidth,
DOUBLE dHeight, LONG nUnit)

7.88.1.1 Implementation in C#
int nResult = axSTPadCapt1.PDFSelectRect(1, 0.0, 0.0, 640.0,
480.0, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.88.1.2 Implementation in Visual Basic
Dim nResult As Integer
nResult = AxSTPadCapt1.PDFSelectRect(1, 0R, 0R,640R, 480R, 0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nResult))
End If

Guide_SIGAPI_20210108_ENG 208

7.88.2 STPadLib.dll
Available from Version 8.1.4 onwards.
LONG STPDFSelectRect(LONG nPage, DOUBLE dLeft, DOUBLE dTop, DOUBLE
dWidth, DOUBLE dHeight, MEASUREMENTUNIT nUnit)
The MEASUREMENTUNIT enumeration is defined as follows:
kPixels = 0,
kMillimetres = 1,
kInches = 2

7.88.2.1 Implementation in C++
int nResult = STPDFSelectRect(1, 0., 0., 640., 480., 0);
if (nResult < 0)
 AfxMessageBox(L"Error!");

7.88.3 STPadLibNet.dll
Available from Version 8.1.4 onwards.
void PDFSelectRect(int page, double left, double top, double width,
double height, MeasurementUnit unit)

Sub PDFSelectRect(ByVal page As Integer, ByVal left As Double, ByVal top
As Double, ByVal width As Double, ByVal height As Double, ByVal unit As
MeasurementUnit)
The MeasurementUnit enumeration is defined as follows:
Pixels = 0,
Millimetres = 1,
Inches = 2

7.88.3.1 Implementation in C#
try
{
 stPad.PDFSelectRect(1, 0.0, 0.0, 640.0, 480.0,
MeasurementUnit.Pixels);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.88.3.2 Implementation in Visual Basic
Try
 STPad.PDFSelectRect(1, 0R, 0R,640R, 480R,
MeasurementUnit.Pixels)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 PDFAddImage / PDFAddImageFromFile method
This method can be used to add an image to a page of the currently loaded PDF document. The added
image(s) is/are then rendered on the page image the next time the DisplaySetPDF() method is
called. This can be used to highlight areas of the document on the signature device, for example.

Parameter Values I/O Description

Guide_SIGAPI_20210108_ENG 209

LONG nPage

int page

ByVal page As
Integer

> 0 I Number of the page to be output (starting at 1)

LONG nLeft

int left

ByVal left As
Integer

all I Left position of the image on the PDF page in pixels
(based on the display of the signature device used);
is adapted to the scaling factor of the
DisplaySetPDF() method

LONG nTop

int top

ByVal top As
Integer

all I Top position of the image on the PDF page in pixels
(based on the display of the signature device used);
is adapted to the scaling factor of the
DisplaySetPDF() method

LONG nImageHandle

HBITMAP hBitmap

Bitmap bitmap

ByVal bitmap As
Bitmap

!=
NULL

I HBITMAP or System.Drawing.Bitmap, to be
output; if there is an existing Alpha channel, it is
taken into account

BSTR bstrPath

LPCWSTR szPath

string path

ByVal path As
String

!=
NULL

I Full file path or URL of the image; supported image
formats are BMP, GIF, JPEG, PNG and TIFF; any
existing Alpha channel is taken into account

Return value Values Description
LONG

int

Integer

>= 0 ID of the added image (unique to the specified page)
< 0 Error (not STPadLibNet.dll)

7.89.1 STPadCapt.ocx
Available from Version 8.4.2.0 onwards.
LONG PDFAddImage(LONG nPage, LONG nLeft, LONG nTop, LONG nImageHandle)

LONG PDFAddImageFromFile(LONG nPage, LONG nLeft, LONG nTop, BSTR
bstrPath)

7.89.1.1 Implementation in C#
Work in the memory:
Bitmap bitmap = (Bitmap)Bitmap.FromFile(@"C:\Image.png");
IntPtr hBitmap = bitmap.GetHbitmap(Color.Black);
int nId = axSTPadCapt1.PDFAddImage(1, 0, 0, hBitmap);
DeleteObject(hBitmap);
if (nId < 0)
 MessageBox.Show(String.Format("Error {0}", nId);

Work with files:
int nId = axSTPadCapt1.PDFAddImageFromFile(1, 0, 0,
@"C:\Image.png");
if (nId < 0)
 MessageBox.Show(String.Format("Error {0}", nId);

Guide_SIGAPI_20210108_ENG 210

7.89.1.2 Implementation in Visual Basic
Work in the memory:
Dim bitmap As Bitmap = Bitmap.FromFile("C:\Image.png")
Dim hBitmap As IntPtr = bitmap.GetHbitmap(Color.Black)
Dim nId As Integer = AxSTPadCapt1.PDFAddImage(1, 0, 0, hBitmap)
DeleteObject(hBitmap)
If nId < 0 Then
 MsgBox("Error " & CStr(nId))
End If

Work with files:
Dim nId As Integer
nId = AxSTPadCapt1.PDFAddImageFromFile(1, 0, 0, "C:\Image.png")
If nId < 0 Then
 MsgBox("Error " & CStr(nId))
End If

7.89.2 STPadLib.dll
Available from Version 8.4.2.0 onwards.
LONG STPDFAddImage(LONG nPage, LONG nLeft, LONG nTop, HBITMAP hBitmap)

LONG STPDFAddImageFromFile(LONG nPage, LONG nLeft, LONG nTop, LPCWSTR
szPath)

7.89.2.1 Implementation in C++
Work in the memory:
HBITMAP hBm = (HBITMAP)LoadImage(0, L"C:\\Image.bmp",
IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE | LR_CREATEDIBSECTION);
LONG nId = STPDFAddImage(1, 0, 0, hBm);
DeleteObject(hBm);
if (nId < 0)
 AfxMessageBox(L"Error!");

Work with files:
LONG nId = STPDFAddImageFromFile(1, 0, 0, L"C:\\Image.png");
if (nId < 0)
 AfxMessageBox(L"Error!");

7.89.3 STPadLibNet.dll
Available from Version 8.4.2.0 onwards.
int PDFAddImage(int page, int left, int top, System.Drawing.Bitmap
bitmap)

int PDFAddImageFromFile(int page, int left, int top, string path)

Function PDFAddImage(ByVal page As Integer, ByVal left As Integer, ByVal
top As Integer, ByVal bitmap As System.Drawing.Bitmap) As Integer

Function PDFAddImageFromFile(ByVal page As Integer, ByVal left As
Integer, ByVal top As Integer, ByVal path As string) As Integer

Guide_SIGAPI_20210108_ENG 211

7.89.3.1 Implementation in C#
Work in the memory:
int nId;
try
{
 Bitmap bitmap = (Bitmap)Bitmap.FromFile(@"C:\Image.png");
 nId = stPad.PDFAddImage(1, 0, 0, bitmap);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Work with files:
int nId;
try
{
 nId = stPad.PDFAddImageFromFile(1, 0, 0, @"C:\Image.png");
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

7.89.3.2 Implementation in Visual Basic
Work in the memory:
Dim nId As Integer
Try
 Dim bitmap As Bitmap = Bitmap.FromFile("C:\Image.png")
 nId = STPad.PDFAddImage(1, 0, 0, bitmap)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Work with files:
Dim nId As Integer
Try
 nId = STPad.PDFAddImageFromFile(1, 0, 0, "C:\Image.png")
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

 PDFRemoveImage method
This method can be used to remove an image that has been added to a page using PDFAddImage()
or PDFAddImageFromFile(). The removed image is no longer rendered on the page image the next
time the DisplaySetPDF() method is called.

Parameter Values I/O Description

Guide_SIGAPI_20210108_ENG 212

LONG nPage

int page

ByVal page As
Integer

> 0 I Number of the page to be output (starting at 1)

LONG nId

int id

ByVal id As
Integer

>= 0 I ID of the image added that must be returned when
calling PDFAddImage() or
PDFAddImageFromFile().

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

7.90.1 STPadCapt.ocx
Available from Version 8.4.2.0 onwards.
LONG PDFRemoveImage(LONG nPage, LONG nId)

7.90.1.1 Implementation in C#
int nResult = axSTPadCapt1.PDFRemoveImage(1, 0);
if (nResult < 0)
 MessageBox.Show(String.Format("Error {0}", nResult);

7.90.1.2 Implementation in Visual Basic
Dim nResult As Integer = AxSTPadCapt1.PDFRemoveImage(1, 0)
If nResult < 0 Then
 MsgBox("Error " & CStr(nId))
End If

7.90.2 STPadLib.dll
Available from Version 8.4.2.0 onwards.
LONG STPDFRemoveImage(LONG nPage, LONG nId)

7.90.2.1 Implementation in C++
LONG nResult = STPDFRemoveImage(1, 0);
if (nResult < 0)
 AfxMessageBox(L"Error!");

7.90.3 STPadLibNet.dll
Available from Version 8.4.2.0 onwards.
void PDFRemoveImage(int page, int id)

Sub PDFRemoveImage(ByVal page As Integer, ByVal id As Integer)

7.90.3.1 Implementation in C#
try
{
 stPad.PDFRemoveImage(1, 0);
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

Guide_SIGAPI_20210108_ENG 213

7.90.3.2 Implementation in Visual Basic
Try
 STPad.PDFAddImage(1, 0)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Guide_SIGAPI_20210108_ENG 214

8 Properties
Properties are named according to the following naming convention:

- General hardware properties begin with ‘Device’
- Properties that apply to signatures begin with ‘Signature’
- LCD properties begin with ‘Display’
- Component properties begin with ‘Control’

The STPadLib.dll component has no properties. Get() and Set() methods are used instead. These
methods all begin with ‘ST,’ for example,„STDeviceGetLedDefaultFlag()“.
Some programming languages, such as C++, for example, do not support COM properties and use
wrapper methods instead. In Visual C++, properties are wrapped as ‘GetProperty()’ and ‘SetProperty(),’
for example.

 DeviceLedDefaultFlag property
This property specifies whether the LED on the front of the pad automatically changes to green when
the device is in signature capture mode. The default setting is TRUE. The LED always lights up yellow as
soon as the device has been detected by the PC operating system and is ready for use.

Value I/O Description
TRUE I/O LED lights up green for a capture process
FALSE I/O LED does not change

8.1.1 STPadCapt.ocx
Available from Version 8.0.1 onwards.
VARIANT_BOOL DeviceLedDefaultFlag

8.1.1.1 Implementation in C#
axSTPadCapt1.DeviceLedDefaultFlag = false;

8.1.1.2 Implementation in Visual Basic
AxSTPadCapt1.DeviceLedDefaultFlag = False

8.1.2 STPadLib.dll
Available from Version 8.0.19 onwards.
BOOL STDeviceGetLedDefaultFlag()

VOID STDeviceSetLedDefaultFlag(BOOL bFlag)

8.1.2.1 Implementation in C++
STDeviceSetLedDefaultFlag(FALSE);

8.1.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
bool DeviceLedDefaultFlag { get; set; }

Property DeviceLedDefaultFlag As Boolean

8.1.3.1 Implementation in C#
stPad.DeviceLedDefaultFlag = false;

8.1.3.2 Implementation in Visual Basic
STPad.DeviceLedDefaultFlag = False

Guide_SIGAPI_20210108_ENG 215

 ControlVersion property
This property holds the version number of the component.

Value I/O Description
max. 16 characters O Version number of the component

8.2.1 STPadCapt.ocx
Available from Version 8.0.19 onwards.
BSTR ControlVersion

8.2.1.1 Implementation in C#
MessageBox.Show(String.Format("Version: {0}",
axSTPadCapt1.ControlVersion));

8.2.1.2 Implementation in Visual Basic
MsgBox("Version: " & AxSTPadCapt1.ControlVersion)

8.2.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STControlGetVersion(WCHAR szVersion[16])

8.2.2.1 Implementation in C++
WCHAR szVersion[16];
LONG nRc = STControlGetVersion(szVersion);
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
 wprintf(L"Version: %s", szVersion);

8.2.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
string ControlVersion { get; }

ReadOnly Property ControlVersion() As String

8.2.3.1 Implementation in C#
try
{
 MessageBox.Show(String.Format("Version: {0}",
stPad.ControlVersion));
}
catch (STPadException ex)
{
 MessageBox.Show(ex.Message);
}

8.2.3.2 Implementation in Visual Basic
Try
 MsgBox("Version: " & STPad.ControlVersion)
Catch ex As STPadException
 MsgBox(ex.Message)
End Try

Guide_SIGAPI_20210108_ENG 216

 ControlAppName property
This property can contain the name of the application that uses the component. Users can use this name
to exclusively assign one or more image memories. Please refer to section ‘Exclusive use of non-volatile
memory’ for details.

Value I/O Description
NULL I/O Application does not use any memories exclusively
!= NULL I/O Name of the application (may contain spaces)

8.3.1 STPadCapt.ocx
Available from Version 8.0.17 onwards.
BSTR ControlAppName

8.3.1.1 Implementation in C#
axSTPadCapt1.ControlAppName = "My Great App";

8.3.1.2 Implementation in Visual Basic
AxSTPadCapt1.ControlAppName = "My Great App"

8.3.2 STPadLib.dll
Available from Version 8.0.19 onwards.
VOID STControlSetAppName(LPCWSTR szName)

8.3.2.1 Implementation in C++
STControlSetAppName(L"My Great App");

8.3.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
string ControlAppName { get; set; }

Property ControlAppName As String

8.3.3.1 Implementation in C#
stPad.ControlAppName = "My Great App";

8.3.3.2 Implementation in Visual Basic
STPad.ControlAppName = "My Great App"

 ControlBackColor property
This property specifies the colour in which the control element’s window is displayed. The default
setting is white.

Value I/O Description
>= 0 I/O Window colour

8.4.1 STPadCapt.ocx
Available from Version 8.0.1 onwards.
OLE_COLOR ControlBackColor

8.4.1.1 Implementation in C#
axSTPadCapt1.ControlBackColor = Color.FromArgb(238, 121, 0);

Guide_SIGAPI_20210108_ENG 217

8.4.1.2 Implementation in Visual Basic
AxSTPadCapt1.ControlBackColor = Color.FromArgb(238, 121, 0)

8.4.2 STPadLib.dll
Not available.

8.4.3 STPadLibNet.dll
Available from Version 8.0.21 onwards (only in the STPadLibControl class).
Color ControlBackColor { get; set; }

Property ControlBackColor As Color

8.4.3.1 Implementation in C#
stPad.ControlBackColor = Color.FromArgb(238, 121, 0);

8.4.3.2 Implementation in Visual Basic
STPad.ControlBackColor = Color.FromArgb(238, 121, 0)

 ControlRectColor property
This property specifies the colour of the one-pixel-wide border within the control element’s window. No
border is drawn if this value is identical to the value of the ControlBackColor property. The default
setting is orange.

Value I/O Description
>= 0 I/O Border colour

8.5.1 STPadCapt.ocx
Available from Version 8.0.3 onwards.
OLE_COLOR ControlRectColor

8.5.1.1 Implementation in C#
axSTPadCapt1.ControlRectColor = Color.FromArgb(238, 121, 0);

8.5.1.2 Implementation in Visual Basic
AxSTPadCapt1.ControlRectColor = Color.FromArgb(238, 121, 0)

8.5.2 STPadLib.dll
Not available.

8.5.3 STPadLibNet.dll
Available from Version 8.0.21 onwards (only in the STPadLibControl class).
Color ControlRectColor { get; set; }

Property ControlRectColor As Color

8.5.3.1 Implementation in C#
stPad.ControlRectColor = Color.FromArgb(238, 121, 0);

8.5.3.2 Implementation in Visual Basic
STPad.ControlRectColor = Color.FromArgb(238, 121, 0)

Guide_SIGAPI_20210108_ENG 218

 ControlPenColor property
This property specifies the colour in which the captured signature is rendered in the control element’s
window. The default setting is blue.

Value I/O Description
>= 0 I/O Pen colour

8.6.1 STPadCapt.ocx
Available from Version 8.0.1 onwards.
OLE_COLOR ControlPenColor

8.6.1.1 Implementation in C#
axSTPadCapt1.ControlPenColor = Color.FromArgb(238, 121, 0);

8.6.1.2 Implementation in Visual Basic
AxSTPadCapt1.ControlPenColor = Color.FromArgb(238, 121, 0)

8.6.2 STPadLib.dll
Not available.

8.6.3 STPadLibNet.dll
Available from Version 8.0.21 onwards (only in the STPadLibControl class).
Color ControlPenColor { get; set; }

Property ControlPenColor As Color

8.6.3.1 Implementation in C#
stPad.ControlPenColor = Color.FromArgb(238, 121, 0);

8.6.3.2 Implementation in Visual Basic
STPad.ControlPenColor = Color.FromArgb(238, 121, 0)

 ControlPenWidth property
This property specifies the pen width with which the captured signature is rendered in the control
element’s window. The default setting is 0 (variable).

Value I/O Description
0 I/O A variable pen width is used that is dependent on the window

size and the pressure values
> 0 I/O Fixed pen width in pixels
< 0 I/O Fixed pen width in pixels (absolute value); the pressure values

are visualized by drawing in variable brightness

8.7.1 STPadCapt.ocx
Available from Version 8.0.3 onwards.
SHORT ControlPenWidth

8.7.1.1 Implementation in C#
axSTPadCapt1.ControlPenWidth = 0;

8.7.1.2 Implementation in Visual Basic
AxSTPadCapt1.ControlPenColor = 0

Guide_SIGAPI_20210108_ENG 219

8.7.2 STPadLib.dll
Not available.

8.7.3 STPadLibNet.dll
Available from Version 8.0.21 onwards (only in the STPadLibControl class).
int ControlPenWidth { get; set; }

Property ControlPenWidth As Integer

8.7.3.1 Implementation in C#
stPad.ControlPenWidth = 0;

8.7.3.2 Implementation in Visual Basic
STPad.ControlPenWidth = 0

 ControlMirrorDisplay property
This property specifies whether the content of the LCD should also be displayed in the control element’s
window. The drawing is always centred in the control. The default setting is 1.

Value I/O Description
0 I/O Nothing is displayed in the control element
1 I/O The signature is displayed in real time in the control element
2 I/O The signature as well as all bitmaps and text are displayed in real

time in the control element; for good results the control must
have the same size as the LDC (in pixels)

3 I/O The signature is displayed in real time in the control element; it’s
scaled that the per SensorSetSignRect() defined rectangle
fills out the window of the control completely

4 I/O Corresponds to the value 2, in this mode, the hotspots
configured on the pad can also be operated with the mouse in
the control element; this does not apply to hotspots that have
been added with the SensorAddKeypadHotspot() method

8.8.1 STPadCapt.ocx
Available from Version 8.0.3 onwards. The status described is available from Version 8.0.29 onwards.
SHORT ControlMirrorDisplay

8.8.1.1 Implementation in C#
axSTPadCapt1.ControlMirrorDisplay = 2;

8.8.1.2 Implementation in Visual Basic
AxSTPadCapt1.ControlMirrorDisplay = 2

8.8.2 STPadLib.dll
Not available.

8.8.3 STPadLibNet.dll
Available from Version 8.0.21 onwards (only in the STPadLibControl class). The status described is
available from Version 8.0.29 onwards.
signotec.STPadLibNet.MirrorMode ControlPenWidth { get; set; }

Property ControlPenWidth As signotec.STPadLibNet.MirrorMode

Guide_SIGAPI_20210108_ENG 220

The MirrorMode enumeration is defined as follows:
Nothing = 0,
Signature = 1,
Everything = 2,
SignRect = 3,
EverythingActiveHotSpots = 4

8.8.3.1 Implementation in C#
stPad.ControlMirrorDisplay = MirrorMode.Everything;

8.8.3.2 Implementation in Visual Basic
STPad.ControlMirrorDisplay = MirrorMode.Everything;

 DisplayWidth property
This property holds the width of the LCD It can only be queried after a device has been opened.

Value I/O Description
>= 0 O Width of the display in pixels
< 0 O Error

8.9.1 STPadCapt.ocx
Available from Version 8.0.1 onwards.
LONG DisplayWidth

8.9.1.1 Implementation in C#
MessageBox.Show(String.Format("Display width is {0}",
axSTPadCapt1.DisplayWidth));

8.9.1.2 Implementation in Visual Basic
MsgBox("Display width is " & CStr(AxSTPadCapt1.DisplayWidth)

8.9.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplayGetWidth()

8.9.2.1 Implementation in C++
wprintf(L"Display width is %d", STDisplayGetWidth());

8.9.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
int DisplayWidth { get; }

ReadOnly Property DisplayWidth As Integer

8.9.3.1 Implementation in C#
MessageBox.Show(String.Format("Display width is {0}",
stPad.DisplayWidth));

8.9.3.2 Implementation in Visual Basic
MsgBox("Display width is " & CStr(STPad.DisplayWidth)

 DisplayHeight property
This property holds the height of the LCD It can only be queried after a device has been opened.

Guide_SIGAPI_20210108_ENG 221

Value I/O Description
>= 0 O Height of the display in pixels
< 0 O Error

8.10.1 STPadCapt.ocx
Available from Version 8.0.1 onwards.
LONG DisplayHeight

8.10.1.1 Implementation in C#
MessageBox.Show(String.Format("Display height is {0}",
axSTPadCapt1.DisplayHeight));

8.10.1.2 Implementation in Visual Basic
MsgBox("Display height is " & CStr(AxSTPadCapt1.DisplayHeight)

8.10.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplayGetHeight()

8.10.2.1 Implementation in C++
wprintf(L"Display height is %d", STDisplayGetHeight());

8.10.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
int DisplayHeight { get; }

ReadOnly Property DisplayHeight As Integer

8.10.3.1 Implementation in C#
MessageBox.Show(String.Format("Display height is {0}",
stPad.DisplayHeight));

8.10.3.2 Implementation in Visual Basic
MsgBox("Display height is " & CStr(STPad.DisplayHeight)

 DisplayResolution property
This property contains the resolution of the LCD. It can only be queried after a device has been opened.

Value I/O Description
>= 0 O Resolution of the display in pixels per inch (ppi).
< 0 O Error

8.11.1 STPadCapt.ocx
Available from Version 8.4.2.0 onwards.
DOUBLE DisplayResolution

8.11.1.1 Implementation in C#
MessageBox.Show(String.Format("Display resolution is {0} ppi",
axSTPadCapt1.DisplayResolution));

Guide_SIGAPI_20210108_ENG 222

8.11.1.2 Implementation in Visual Basic
MsgBox("Display resolution is " &
CStr(AxSTPadCapt1.DisplayResolution)

8.11.2 STPadLib.dll
Available from Version 8.4.2.0 onwards.
DOUBLE STDisplayGetResolution()

8.11.2.1 Implementation in C++
wprintf(L"Display resolution is %d", STDisplayGetResolution());

8.11.3 STPadLibNet.dll
Available from Version 8.4.2.0 onwards.
double DisplayResolution { get; }

ReadOnly Property DisplayResolution As Double

8.11.3.1 Implementation in C#
MessageBox.Show(String.Format("Display resolution is {0}",
stPad.DisplayResolution));

8.11.3.2 Implementation in Visual Basic
MsgBox("Display resolution is " & CStr(STPad.DisplayResolution)

 DisplayTargetWidth property
This property holds the width of the memory defined with the DisplaySetTarget() method. It can
only be queried after a device has been opened.

Value I/O Description
>= 0 O Width of the memory in pixels
< 0 O Error

8.12.1 STPadCapt.ocx
Available from Version 8.0.17 onwards.
LONG DisplayTargetWidth

8.12.1.1 Implementation in C#
MessageBox.Show(String.Format("Target width is {0}",
axSTPadCapt1.DisplayTargetWidth));

8.12.1.2 Implementation in Visual Basic
MsgBox("Target width is " & CStr(AxSTPadCapt1.DisplayTargetWidth)

8.12.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplayGetTargetWidth()

8.12.2.1 Implementation in C++
wprintf(L"Target width is %d", STDisplayGetTargetWidth());

8.12.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.

Guide_SIGAPI_20210108_ENG 223

int DisplayTargetWidth { get; }

ReadOnly Property DisplayTargetWidth As Integer

8.12.3.1 Implementation in C#
MessageBox.Show(String.Format("Target width is {0}",
stPad.DisplayTargetWidth));

8.12.3.2 Implementation in Visual Basic
MsgBox("Target width is " & CStr(STPad.DisplayTargetWidth)

 DisplayTargetHeight property
This property holds the height of the memory defined with the DisplaySetTarget() method. It can
only be queried after a device has been opened.

Value I/O Description
>= 0 O Height of the memory in pixels
< 0 O Error

8.13.1 STPadCapt.ocx
Available from Version 8.0.17 onwards.
LONG DisplayScrollSpeed

8.13.1.1 Implementation in C#
MessageBox.Show(String.Format("Target height is {0}",
axSTPadCapt1.DisplayTargetHeight));

8.13.1.2 Implementation in Visual Basic
MsgBox("Target height is " &
CStr(AxSTPadCapt1.DisplayTargetHeight)

8.13.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplayGetTargetHeight()

8.13.2.1 Implementation in C++
wprintf(L"Target height is %d", STDisplayGetTargetHeight());

8.13.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
int DisplayTargetHeight { get; }

ReadOnly Property DisplayTargetHeight As Integer

8.13.3.1 Implementation in C#
MessageBox.Show(String.Format("Target height is {0}",
stPad.DisplayTargetHeight));

8.13.3.2 Implementation in Visual Basic
MsgBox("Target height is " & CStr(STPad.DisplayTargetHeight)

Guide_SIGAPI_20210108_ENG 224

 DisplayScrollSpeed property
This property determines the speed at which the screen content is scrolled when a hotspot generated by
STSensorAddScrollHotSpot() is triggered. The default setting is 100.

Value I/O Description
1 - 1000 I/O Scroll speed in lines / second; not all values are possible; invalid

values are rounded to the next valid value

8.14.1 STPadCapt.ocx
Available from Version 8.0.17 onwards.
LONG DisplayScrollSpeed

8.14.1.1 Implementation in C#
axSTPadCapt1.DisplayScrollSpeed = 100;

8.14.1.2 Implementation in Visual Basic
AxSTPadCapt1.DisplayScrollSpeed = 100

8.14.2 STPadLib.dll
Available from Version 8.0.19 onwards.
LONG STDisplayGetScrollSpeed()

LONG STDisplaySetScrollSpeed(LONG nSpeed)
The STDisplaySetScrollSpeed() method returns the value that has actually been set.

8.14.2.1 Implementation in C++
STDisplaySetScrollSpeed(100);

8.14.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
int DisplayScrollSpeed { get; set; }

Property DisplayScrollSpeed As Integer

8.14.3.1 Implementation in C#
stPad.DisplayScrollSpeed = 100;

8.14.3.2 Implementation in Visual Basic
STPad.DisplayScrollSpeed = 100

 DisplayRotation property
This property defines the rotation with which the image data is transferred to the signature device and
the sensor areas are defined. A change to the value only affects images and sensor areas which are
transferred after the change is made and not images which are copied from one pad memory to
another. The default setting is 0.

Value I/O Description
0, 180 I/O Rotation in degrees (clockwise)

8.15.1 STPadCapt.ocx
Available from Version 8.0.29 onwards.
LONG DisplayRotation

Guide_SIGAPI_20210108_ENG 225

8.15.1.1 Implementation in C#
axSTPadCapt1.DisplayRotation = 180;

8.15.1.2 Implementation in Visual Basic
AxSTPadCapt1.DisplayRotation = 180

8.15.2 STPadLib.dll
Available from Version 8.0.29 onwards.
LONG STDisplayGetRotation()

LONG STDisplaySetRotation(LONG nRotation)

8.15.2.1 Implementation in C++
STDisplaySetRotation(180);

8.15.3 STPadLibNet.dll
Available from Version 8.0.29 onwards.
int DisplayRotation { get; set; }

Property DisplayRotation As Integer

8.15.3.1 Implementation in C#
stPad.DisplayRotation = 180;

8.15.3.2 Implementation in Visual Basic
STPad.DisplayRotation = 180

 SignatureState property
This property holds the current state of the signature capture process.

Value I/O Description
TRUE O Signature capture process is running
FALSE O Signature capture process is not running

8.16.1 STPadCapt.ocx
Available from Version 8.0.1 onwards.
VARIANT_BOOL SignatureState

8.16.1.1 Implementation in C#
if (!axSTPadCapt1.SignatureState)
 axSTPadCapt1.SignatureStart();
else
 axSTPadCapt1.SignatureConfirm();

8.16.1.2 Implementation in Visual Basic
If AxSTPadCapt1.SignatureState = False Then
 AxSTPadCapt1.SignatureStart()
Else
 AxSTPadCapt1.SignatureConfirm()
End If

8.16.2 STPadLib.dll
Available from Version 8.0.19 onwards.

Guide_SIGAPI_20210108_ENG 226

BOOL STSignatureGetState()

8.16.2.1 Implementation in C++
if (!STSignatureGetState())
 STSignatureStart();
else
 STSignatureConfirm();

8.16.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
bool SignatureState { get; }

ReadOnly Property SignatureState As Boolean

8.16.3.1 Implementation in C#
if (!stPad.SignatureState)
 stPad.SignatureStart();
else
 stPad.SignatureConfirm();

8.16.3.2 Implementation in Visual Basic
If STPad.SignatureState = False Then
 STPad.SignatureStart()
Else
 STPad.SignatureConfirm()
End If

 RSASignPasswordLength property
This property determines the minimum password length that the password to be set with
RSASetSignPassword() must have before RSASign() can be used for signing. If the pad supports
the function, every time RSASetSigningCert() or RSAGenerateSigningCert() is called, the
current value is set as the minimum password length. If the function is not supported, a value set here
that is unequal to 0 will result in an error.
0 (no minimum length) is set by default.
This property is not automatically reset when the pad is closed.
The minimum password length specification works with the Sigma model from firmware 2.13, the Zeta
model from firmware 1.0, the Omega model from firmware 2.17, the Gamma model from firmware 1.32
and the Delta model from firmware 1.31.

Value I/O Description
0 I/O No minimum password length is set
> 0 I/O A minimum password length is set. Odd numbers from 1 to 31

are allowed.

8.17.1 STPadCapt.ocx
Available from Version 8.4.3 onwards.
LONG RSAPasswordLength

8.17.1.1 Implementation in C#
axSTPadCapt1.RSAPasswordLength = 31;

8.17.1.2 Implementation in Visual Basic
AxSTPadCapt1.RSAPasswordLength = 31

Guide_SIGAPI_20210108_ENG 227

8.17.2 STPadLib.dll
Available from Version 8.4.3 onwards.
LONG STRSAGetSignPasswordLength()

LONG STRSASetSignPasswordLength(LONG nPasswordLength)

8.17.2.1 Implementation in C++
STRSASetSignPasswordLength(31);

8.17.3 STPadLibNet.dll
Available from Version 8.4.3 onwards.
int RSAPasswordLength { get; set; }

Property RSAPasswordLength As Integer

8.17.3.1 Implementation in C#
stPad.RSAPasswordLength = 31;

8.17.3.2 Implementation in Visual Basic
STPad.RSAPasswordLength = 31

 SignatureSignData property
This method is obsolete and is only included for compatibility reasons. Please use the
SignatureGetSignData() method instead.

Guide_SIGAPI_20210108_ENG 228

9 Events
Events are named according to the following naming convention:

- General hardware events begin with ‘Device’
- Events that apply to the signature begin with ‘Signature’
- Sensor events begin with ‘Sensor’
- Display events begin with ‘Display’

The STPadLib.dll component uses a callback mechanism to pass events through to the application. For
more information, see the STControlSetCallback() method.
The events are implemented as delegates in the STPadLibNet.dll component. They run in the thread of
the DLL, which is why UI elements of the application cannot be addressed directly. A further delegate
must be addressed using Invoke() instead. Please also see the demo application included.

 DeviceDisconnected event
This event is called as soon as a device is disconnected through an external event (e. g. unplugging the
device).

Parameter Values Description
LONG nIndex

int index

index As Integer

>= 0 Index of the disconnected device

Return value Values Description
- - -

9.1.1 STPadCapt.ocx
Available from Version 8.0.3 onwards.
void DeviceDisconnected(LONG nIndex)

9.1.1.1 Implementation in C#
private void axSTPadCapt1_DeviceDisconnected(object sender,
AxSTPadCaptLib._DSTPadCaptEvents_DeviceDisconnectEvent e)
{
 MessageBox.Show(String.Format("Device {0} disconnected!",
e.nIndex);
}

9.1.1.2 Implementation in Visual Basic
Private Sub AxSTPadCapt1_DeviceDisconnected _
(ByVal sender As System.Object, ByVal e As _
AxSTPadCaptLib._DSTPadCaptEvents_DeviceDisconnectedEvent) _
Handles AxSTPadCapt1.DeviceDisconnected
 MsgBox("Device " & CStr(e.nIndex) & " disconnected!")
End Sub

9.1.2 STPadLib.dll
Available from Version 8.0.19 onwards.
VOID DeviceDisconnected(LONG nIndex)

9.1.2.1 Implementation in C++
VOID CMyClass::DeviceDisconnected(LONG nIndex)
{
 wprintf(L"Device %d disconnected!", nIndex);

Guide_SIGAPI_20210108_ENG 229

}

9.1.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void raise_DeviceDisconnected(object sender,
signotec.STPadLibNet.DeviceDisconnectedEventArgs e)

Event DeviceDisconnected(ByVal sender As Object, ByVal e As
signotec.STPadLibNet.DeviceDisconnectedEventArgs)
The DeviceDisconnectedEventArgs class contains the following member described above:
public int index

Public index As Integer

9.1.3.1 Implementation in C#
private void STPad_DeviceDisconnected(object sender,
DeviceDisconnectEventArgs e)
{
 MessageBox.Show(String.Format("Device {0} disconnected!",
e.index);
}

9.1.3.2 Implementation in Visual Basic
Private Sub STPad_DeviceDisconnected(ByVal sender As Object, _
ByVal e As DeviceDisconnectedEventArgs) Handles _
STPad.DeviceDisconnected
 MsgBox("Device " & CStr(e.index) & " disconnected!")
End Sub

 SignatureDataReceived event
This event is called when signature data is received from the pad.

Parameter Values Description
LONG nXPos

int xPos

xPos As Integer

>= 0 x value of the received data record

LONG nYPos

int yPos

yPos As Integer

>= 0 y value of the received data record

LONG nPressure

int pressure

pressure As
Integer

0 -
1024

Pressure value of the received data record

LONG nTimestamp

int timestamp

timestamp As
Integer

>= 0 Timestamp of the received data record

Return value Values Description
- - -

Guide_SIGAPI_20210108_ENG 230

9.2.1 STPadCapt.ocx
Available from Version 8.0.19 onwards.
void SignatureDataReceived(LONG nXPos, LONG nYPos, LONG nPressure, LONG
nTimestamp)

9.2.1.1 Implementation in C#
private void axSTPadCapt1_SignatureDataReceived(object sender,
AxSTPadCaptLib._DSTPadCaptEvents_SignatureDataReceived e)
{
 MessageBox.Show(String.Format("X: {0}; Y: {1}; P: {2}; T:
{3}", e.nXPos, e.nYPos, e.nPressure, e.nTimestamp);
}

9.2.1.2 Implementation in Visual Basic
Private Sub AxSTPadCapt1_SignatureDataReceived _
(ByVal eventSender As System.Object, ByVal e As _
AxSTPadCaptLib._DSTPadCaptEvents_SignatureDataReceived) _ Handles
AxSTPadCapt1.SignatureDataReceived
 MsgBox("X: " & CStr(e.nXPos) & "; Y: " & CStr(e.nYPos) & "; P:
" & _ CStr(e.nPressure) & "; T: " & CStr(e.nTimestamp))
End Sub

9.2.2 STPadLib.dll
Available from Version 8.0.19 onwards.
VOID SignatureDataReceived(LONG nXPos, LONG nYPos, LONG nPressure, LONG
nTimestamp)

9.2.2.1 Implementation in C++
void CMyClass::SignatureDataReceived(long nXPos, long nYPos, long
nPressure, long nTimestamp)
{
 WCHAR szText[64];
 swprintf_s(szText, 64, L"X: %d; Y: %d; P: %d; T: %d", nXPos,
nYPos, nPressure, nTimestamp);
 AfxMessageBox(szText);
}

9.2.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void raise_SignatureDataReceived(object sender, signotec.STPadLibNet.
SignatureDataReceivedEventArgs e)

Event SignatureDataReceived(ByVal sender As Object, ByVal e As
signotec.STPadLibNet.SignatureDataReceivedEventArgs)
The SignatureDataReceivedEventArgs class contains the following members described above:
public int xPos
public int yPos
public int pressure
public int timestamp

Public xPos As Integer
Public yPos As Integer
Public pressure As Integer
Public timestamp As Integer

Guide_SIGAPI_20210108_ENG 231

9.2.3.1 Implementation in C#
private void STPad_SignatureDataReceived(object sender,
SignatureDataReceivedEventArgs e)
{
 MessageBox.Show(String.Format("X: {0}; Y: {1}; P: {2}; T:
{3}", e.xPos, e.yPos, e.pressure, e.timestamp);
}

9.2.3.2 Implementation in Visual Basic
Private Sub STPad_SignatureDataReceived(ByVal sender As Object, _
ByVal e As SignatureDataReceivedEventArgs) Handles _
STPad.SignatureDataReceived
 MsgBox("X: " & CStr(e.xPos) & "; Y: " & CStr(e.yPos) & "; P: "
& _ CStr(e.pressure) & "; T: " & CStr(e.timestamp))
End Sub

 SensorHotSpotPressed event
This event is called as soon as the user lifts the pen off a rectangle defined with
SensorAddHotSpot(), SensorAddScrollHotSpot() or SensorAddKeyPadHotSpot() after
placing it in this rectangle.

Parameter Values Description
LONG nHotSpotId

int hotSpotId

hotSpotId As
Integer

>= 0 ID of the operated hotspot
-1 An area set with SensorAddKeypadHotSpot() was

clicked once and added to the list stored in the signature
device

-2 An area set with SensorAddKeypadHotSpot() has
been clicked at least once but could not be added to the list
stored in the signature device because it is full

Return value Values Description
- - -

9.3.1 STPadCapt.ocx
Available from Version 8.0.1 onwards. The status described is available from Version 8.4.3 onwards.
void SensorHotSpotPressed(LONG nHotSpotId)

9.3.1.1 Implementation in C#
private void axSTPadCapt1_SensorHotSpotPressed(object sender,
AxSTPadCaptLib._DSTPadCaptEvents_SensorHotSpotPressedEvent e)
{
 if (e.nHotSpotId >= 0)
 MessageBox.Show(String.Format("Hotspot {0}",
e.nHotSpotId);
 else
 // process keypad hotspot...
}

9.3.1.2 Implementation in Visual Basic
Private Sub AxSTPadCapt1_SensorHotSpotPressed _
(ByVal eventSender As System.Object, ByVal e As _
AxSTPadCaptLib._DSTPadCaptEvents_SensorHotSpotPressedEvent) _
Handles AxSTPadCapt1.SensorHotSpotPressed
 If (e.nHotSpotId >= 0) Then
 MsgBox("Hotspot " & CStr(e.nHotSpotId)

Guide_SIGAPI_20210108_ENG 232

 Else
 ' process keypad hotspot...
 End If
End Sub

9.3.2 STPadLib.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.3 onwards.
VOID SensorHotSpotPressed(LONG nHotSpotId)

9.3.2.1 Implementation in C++
VOID CMyClass::SensorHotSpotPressed(LONG nHotSpotId)
{
 if (e.nHotSpotId >= 0)
 wprintf(L"Hotspot %d!", nHotSpotId);
 else
 // process keypad hotspot...
}

9.3.3 STPadLibNet.dll
Available from Version 8.0.19 onwards. The status described is available from Version 8.4.3 onwards.
void raise_SensorHotSpotPressed(object sender,
signotec.STPadLibNet.SensorHotSpotPressedEventArgs e)

Event SensorHotSpotPressed(ByVal sender As Object, ByVal e As
signotec.STPadLibNet.SensorHotSpotPressedEventArgs)
The SensorTimeoutOccuredEventArgs class contains the following member described above:
public int hotSpotId

Public hotSpotId As Integer

9.3.3.1 Implementation in C#
private void STPad_SensorHotSpotPressed(object sender,
SensorHotSpotPressedEventArgs e)
{
 if (e.nHotSpotId >= 0)
 MessageBox.Show(String.Format("Hotspot {0}", e.hotSpotId);
 else
 // process keypad hotspot...
}

9.3.3.2 Implementation in Visual Basic
Private Sub STPad_SensorHotSpotPressed(ByVal sender As Object, _
ByVal e As SensorHotSpotPressedEventArgs) Handles _
STPad.SensorHotSpotPressed
 If (e.nHotSpotId >= 0) Then
 MsgBox("Hotspot " & CStr(e.hotSpotId)
 Else
 ' process keypad hotspot...
 End If
End Sub

 Event SensorTimeoutOccured
This event is called as soon as the timer started with SensorStartTimer() has expired.

Parameter Values Description

Guide_SIGAPI_20210108_ENG 233

LONG nPointsCount

int pointsCount

pointsCount As
Integer

>= 0 Number of points captured if any

Return value Values Description
- - -

9.4.1 STPadCapt.ocx
Available from Version 8.0.11 onwards.
void SensorTimeoutOccured(LONG nPointsCount)

9.4.1.1 Implementation in C#
private void axSTPadCapt1_SensorTimeoutOccured(object sender,
AxSTPadCaptLib._DSTPadCaptEvents_SensorTimeoutOccuredEvent e)
{
 MessageBox.Show(String.Format("Timeout, captured points: {0}",
e.nPointsCount);
}

9.4.1.2 Implementation in Visual Basic
Private Sub AxSTPadCapt1_SensorTimeoutOccured _
(ByVal eventSender As System.Object, ByVal e As _
AxSTPadCaptLib._DSTPadCaptEvents_SensorTimeoutOccuredEvent) _
Handles AxSTPadCapt1.SensorTimeoutOccured
 MsgBox("Timeout, captured points: " & CStr(e.nPointsCount)
End Sub

9.4.2 STPadLib.dll
Available from Version 8.0.19 onwards.
VOID SensorTimeoutOccured(LONG nPointsCount)

9.4.2.1 Implementation in C++
VOID CMyClass::SensorTimeoutOccured(LONG nPointsCount)
{
 wprintf(L"Timeout, captured points: %d!", nPointsCount);
}

9.4.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void raise_SensorTimeoutOccured(object sender,
signotec.STPadLibNet.SensorTimeoutOccuredEventArgs e)

Event SensorTimeoutOccured(ByVal sender As Object, ByVal e As
signotec.STPadLibNet.SensorTimeoutOccuredEventArgs)
The SensorTimeoutOccuredEventArgs class contains the following member described above:
public int pointsCount

Public pointsCount As Integer

Guide_SIGAPI_20210108_ENG 234

9.4.3.1 Implementation in C#
private void STPad_SensorTimeoutOccured(object sender,
SensorTimeoutOccuredEventArgs e)
{
 MessageBox.Show(String.Format("Timeout, captured points: {0}",
e.pointsCount);
}

9.4.3.2 Implementation in Visual Basic
Private Sub STPad_SensorTimeoutOccured(ByVal sender As Object, _
ByVal e As SensorTimeoutOccuredEventArgs) Handles _
STPad.SensorTimeoutOccured
 MsgBox("Timeout, captured points: " & CStr(e.pointsCount)
End Sub

 DisplayScrollPosChanged event
This event is called as soon as the scroll position of the display contents has changed.

Parameter Values Description
LONG nXPos

int xPos

xPos As Integer

>= 0 Horizontal offset of the display contents to the left, in pixels

LONG nYPos

int yPos

yPos As Integer

>= 0 Vertical offset of the display contents to the top, in pixels

Return value Values Description
- - -

9.5.1 STPadCapt.ocx
Available from Version 8.0.17 onwards.
void DisplayScrollPosChanged(LONG nXPos, LONG nYPos)

9.5.1.1 Implementation in C#
private void axSTPadCapt1_DisplayScrollPosChanged(object sender,
AxSTPadCaptLib._DSTPadCaptEvents_DisplayScrollPosChanged e)
{
 MessageBox.Show(String.Format("Scroll pos: {0} / {1}",
e.nXPos, e.nYPos);
}

9.5.1.2 Implementation in Visual Basic
Private Sub AxSTPadCapt1_DisplayScrollPosChanged _
(ByVal eventSender As System.Object, ByVal e As _
AxSTPadCaptLib._DSTPadCaptEvents_DisplayScrollPosChanged) _
Handles AxSTPadCapt1.DisplayScrollPosChanged
 MsgBox("Scroll pos: " & CStr(e.nXPos) & " / " & CStr(e.nYPos))
End Sub

9.5.2 STPadLib.dll
Available from Version 8.0.19 onwards.
VOID DisplayScrollPosChanged(LONG nXPos, LONG nYPos)

Guide_SIGAPI_20210108_ENG 235

9.5.2.1 Implementation in C++
VOID CMyClass::DisplayScrollPosChanged(LONG nXPos, LONG nYPos)
{
 wprintf(L"Scroll pos: %d / %d", nXPos, nYPos);
}

9.5.3 STPadLibNet.dll
Available from Version 8.0.19 onwards.
void raise_DisplayScrollPosChanged(object sender,
signotec.STPadLibNet.DisplayScrollPosChangedEventArgs e)

Event DisplayScrollPosChanged(ByVal sender As Object, ByVal e As
signotec.STPadLibNet.DisplayScrollPosChangedEventArgs)
The DisplayScrollPosChangedEventArgs class contains the following members described
above:
public int xPos
public int yPos

Public xPos As Integer
Public yPos As Integer

9.5.3.1 Implementation in C#
private void STPad_DisplayScrollPosChanged(object sender,
DisplayScrollPosChangedEventArgs e)
{
 MessageBox.Show(String.Format("Scroll pos: {0} / {1}", e.xPos,
e.yPos);
}

9.5.3.2 Implementation in Visual Basic
Private Sub STPad_DisplayScrollPosChanged(ByVal sender As Object,
_ ByVal e As DisplayScrollPosChangedEventArgs) Handles _
STPad.DisplayScrollPosChanged
 MsgBox("Scroll pos: " & CStr(e.xPos) & " / " & CStr(e.yPos))
End Sub

www.evolis.com

	1 Functional overview
	2 System requirements
	2.1 signoPAD API components for Windows
	2.1.1 Dependencies
	2.1.2 Known problems
	2.1.2.1 Visual C ++ and optional parameters
	2.1.2.2 Multithreading
	2.1.2.3 .NET 3.5 and older
	2.1.2.4 .NET 4.0

	2.2 signoPAD API components for Java
	2.3 signoPAD API components for Linux

	3 General information on the signoPAD-API components
	3.1 32- and 64-bit variants of the signoPAD API
	3.2 STPadCapt.ocx
	3.2.1 ProgID allocation

	3.3 STPadLib.dll
	3.4 STPadLibNet.dll
	3.4.1 Using the STPadLibControl class
	3.4.2 Using the STPadLib class
	3.4.3 Using both classes

	3.5 Using multiple instances
	3.6 Data formats
	3.7 SignData structures
	3.8 Notes for redistribution

	4 Signing and encryption with signotec LCD signature pads
	4.1 Signing documents
	4.2 Signing of image content (content signing)

	5 Description of possible error messages
	6 Information about the available image memory
	6.1 Volatile image memory
	6.1.1 Model type Sigma
	6.1.2 Model type Zeta
	6.1.3 Model type Omega
	6.1.4 Model type Gamma
	6.1.5 Model type Delta
	6.1.6 Model type Alpha

	6.2 Non-volatile image memory
	6.2.1 Model type Sigma
	6.2.2 Model type Zeta
	6.2.3 Model type Omega
	6.2.4 Model type Gamma
	6.2.5 Model type Delta
	6.2.6 Model type Alpha

	6.3 Copying between image memories
	6.4 The typical process
	6.5 The standby feature
	6.5.1 Displaying a logo
	6.5.2 Displaying a slide show

	6.6 Exclusive use of non-volatile memory
	6.6.1 Implementation in an application
	6.6.2 Assign non-volatile memory to an application

	7 Methods
	7.1 DeviceSetComPort method
	7.1.1 STPadCapt.ocx
	7.1.1.1 Implementation in C#
	7.1.1.2 Implementation in Visual Basic

	7.1.2 STPadLib.dll
	7.1.2.1 Implementation in C++

	7.1.3 STPadLibNet.dll
	7.1.3.1 Implementation in C#
	7.1.3.2 Implementation in Visual Basic

	7.2 DeviceGetConnectionType method
	7.2.1 STPadCapt.ocx
	7.2.1.1 Implementation in C#
	7.2.1.2 Implementation in Visual Basic

	7.2.2 STPadLib.dll
	7.2.2.1 Implementation in C++

	7.2.3 STPadLibNet.dll
	7.2.3.1 Implementation in C#
	7.2.3.2 Implementation in Visual Basic

	7.3 DeviceGetComPort method
	7.3.1 STPadCapt.ocx
	7.3.1.1 Implementation in C#
	7.3.1.2 Implementation in Visual Basic

	7.3.2 STPadLib.dll
	7.3.2.1 Implementation in C++

	7.3.3 STPadLibNet.dll
	7.3.3.1 Implementation in C#
	7.3.3.2 Implementation in Visual Basic

	7.4 DeviceGetIPAddress method
	7.4.1 STPadCapt.ocx
	7.4.1.1 Implementation in C#
	7.4.1.2 Implementation in Visual Basic

	7.4.2 STPadLib.dll
	7.4.2.1 Implementation in C++

	7.4.3 STPadLibNet.dll
	7.4.3.1 Implementation in C#
	7.4.3.2 Implementation in Visual Basic

	7.5 DeviceGetCount method
	7.5.1 STPadCapt.ocx
	7.5.1.1 Implementation in C#
	7.5.1.2 Implementation in Visual Basic

	7.5.2 STPadLib.dll
	7.5.2.1 Implementation in C++

	7.5.3 STPadLibNet.dll
	7.5.3.1 Implementation in C#
	7.5.3.2 Implementation in Visual Basic

	7.6 DeviceGetInfo method
	7.6.1 STPadCapt.ocx
	7.6.1.1 Implementation in C#
	7.6.1.2 Implementation in Visual Basic

	7.6.2 STPadLib.dll
	7.6.2.1 Implementation in C++

	7.6.3 STPadLibNet.dll
	7.6.3.1 Implementation in C#
	7.6.3.2 Implementation in Visual Basic

	7.7 DeviceGetVersion method
	7.7.1 STPadCapt.ocx
	7.7.1.1 Implementation in C#
	7.7.1.2 Implementation in Visual Basic

	7.7.2 STPadLib.dll
	7.7.2.1 Implementation in C++

	7.7.3 STPadLibNet.dll
	7.7.3.1 Implementation in C#
	7.7.3.2 Implementation in Visual Basic

	7.8 DeviceGetCapabilities method
	7.8.1 STPadCapt.ocx
	7.8.1.1 Implementation in C#
	7.8.1.2 Implementation in Visual Basic

	7.8.2 STPadLib.dll
	7.8.2.1 Implementation in C++

	7.8.3 STPadLibNet.dll
	7.8.3.1 Implementation in C#
	7.8.3.2 Implementation in Visual Basic

	7.9 DeviceOpen method
	7.9.1 STPadCapt.ocx
	7.9.1.1 Implementation in C#
	7.9.1.2 Implementation in Visual Basic

	7.9.2 STPadLib.dll
	7.9.2.1 Implementation in C++

	7.9.3 STPadLibNet.dll
	7.9.3.1 Implementation in C#
	7.9.3.2 Implementation in Visual Basic

	7.10 DeviceClose method
	7.10.1 STPadCapt.ocx
	7.10.1.1 Implementation in C#
	7.10.1.2 Implementation in Visual Basic

	7.10.2 STPadLib.dll
	7.10.2.1 Implementation in C++

	7.10.3 STPadLibNet.dll
	7.10.3.1 Implementation in C#
	7.10.3.2 Implementation in Visual Basic

	7.11 DeviceSetLed method
	7.11.1 STPadCapt.ocx
	7.11.1.1 Implementation in C#
	7.11.1.2 Implementation in Visual Basic

	7.11.2 STPadLib.dll
	7.11.2.1 Implementation in C++

	7.11.3 STPadLibNet.dll
	7.11.3.1 Implementation in C#
	7.11.3.2 Implementation in Visual Basic

	7.12 DeviceGetNFCMode method
	7.12.1 STPadCapt.ocx
	7.12.1.1 Implementation in C#
	7.12.1.2 Implementation in Visual Basic

	7.12.2 STPadLib.dll
	7.12.2.1 Implementation in C++

	7.12.3 STPadLibNet.dll
	7.12.3.1 Implementation in C#
	7.12.3.2 Implementation in Visual Basic

	7.13 DeviceSetNFCMode method
	7.13.1 STPadCapt.ocx
	7.13.1.1 Implementation in C#
	7.13.1.2 Implementation in Visual Basic

	7.13.2 STPadLib.dll
	7.13.2.1 Implementation in C++

	7.13.3 STPadLibNet.dll
	7.13.3.1 Implementation in C#
	7.13.3.2 Implementation in Visual Basic

	7.14 DeviceStartService method
	7.14.1 STPadCapt.ocx
	7.14.1.1 Implementation in C#
	7.14.1.2 Implementation in Visual Basic

	7.14.2 STPadLib.dll
	7.14.2.1 Implementation in C++

	7.14.3 STPadLibNet.dll
	7.14.3.1 Implementation in C#
	7.14.3.2 Implementation in Visual Basic

	7.15 SensorGetSampleRateMode method
	7.15.1 STPadCapt.ocx
	7.15.1.1 Implementation in C#
	7.15.1.2 Implementation in Visual Basic

	7.15.2 STPadLib.dll
	7.15.2.1 Implementation in C++

	7.15.3 STPadLibNet.dll
	7.15.3.1 Implementation in C#
	7.15.3.2 Implementation in Visual Basic

	7.16 SensorSetSampleRateMode method
	7.16.1 STPadCapt.ocx
	7.16.1.1 Implementation in C#
	7.16.1.2 Implementation in Visual Basic

	7.16.2 STPadLib.dll
	7.16.2.1 Implementation in C++

	7.16.3 STPadLibNet.dll
	7.16.3.1 Implementation in C#
	7.16.3.2 Implementation in Visual Basic

	7.17 SensorSetSignRect method
	7.17.1 STPadCapt.ocx
	7.17.1.1 Implementation in C#
	7.17.1.2 Implementation in Visual Basic

	7.17.2 STPadLib.dll
	7.17.2.1 Implementation in C++

	7.17.3 STPadLibNet.dll
	7.17.3.1 Implementation in C#
	7.17.3.2 Implementation in Visual Basic

	7.18 SensorClearSignRect method
	7.18.1 STPadCapt.ocx
	7.18.1.1 Implementation in C#
	7.18.1.2 Implementation in Visual Basic

	7.18.2 STPadLib.dll
	7.18.2.1 Implementation in C++

	7.18.3 STPadLibNet.dll
	7.18.3.1 Implementation in C#
	7.18.3.2 Implementation in Visual Basic

	7.19 SensorSetScrollArea method
	7.19.1 STPadCapt.ocx
	7.19.1.1 Implementation in C#
	7.19.1.2 Implementation in Visual Basic

	7.19.2 STPadLib.dll
	7.19.2.1 Implementation in C++

	7.19.3 STPadLibNet.dll
	7.19.3.1 Implementation in C#
	7.19.3.2 Implementation in Visual Basic

	7.20 SensorSetPenScrollingEnabled method
	7.20.1 STPadCapt.ocx
	7.20.1.1 Implementation in C#
	7.20.1.2 Implementation in Visual Basic

	7.20.2 STPadLib.dll
	7.20.2.1 Implementation in C++

	7.20.3 STPadLibNet.dll
	7.20.3.1 Implementation in C#
	7.20.3.2 Implementation in Visual Basic

	7.21 SensorAddHotSpot method
	7.21.1 STPadCapt.ocx
	7.21.1.1 Implementation in C#
	7.21.1.2 Implementation in Visual Basic

	7.21.2 STPadLib.dll
	7.21.2.1 Implementation in C++

	7.21.3 STPadLibNet.dll
	7.21.3.1 Implementation in C#
	7.21.3.2 Implementation in Visual Basic

	7.22 SensorAddScrollHotSpot method
	7.22.1 STPadCapt.ocx
	7.22.1.1 Implementation in C#
	7.22.1.2 Implementation in Visual Basic

	7.22.2 STPadLib.dll
	7.22.2.1 Implementation in C++

	7.22.3 STPadLibNet.dll
	7.22.3.1 Implementation in C#
	7.22.3.2 Implementation in Visual Basic

	7.23 SensorAddKeypadHotSpot method
	7.23.1 STPadCapt.ocx
	7.23.1.1 Implementation in C#
	7.23.1.2 Implementation in Visual Basic

	7.23.2 STPadLib.dll
	7.23.2.1 Implementation in C++

	7.23.3 STPadLibNet.dll
	7.23.3.1 Implementation in C#
	7.23.3.2 Implementation in Visual Basic

	7.24 SensorGetKeypadEntries method
	7.24.1 STPadCapt.ocx
	7.24.1.1 Implementation in C#
	7.24.1.2 Implementation in Visual Basic

	7.24.2 STPadLib.dll
	7.24.2.1 Implementation in C++

	7.24.3 STPadLibNet.dll
	7.24.3.1 Implementation in C#
	7.24.3.2 Implementation in Visual Basic

	7.25 SensorSetHotspotMode method
	7.25.1 STPadCapt.ocx
	7.25.1.1 Implementation in C#
	7.25.1.2 Implementation in Visual Basic

	7.25.2 STPadLib.dll
	7.25.2.1 Implementation in C++

	7.25.3 STPadLibNet.dll
	7.25.3.1 Implementation in C#
	7.25.3.2 Implementation in Visual Basic

	7.26 SensorClearHotSpots method
	7.26.1 STPadCapt.ocx
	7.26.1.1 Implementation in C#
	7.26.1.2 Implementation in Visual Basic

	7.26.2 STPadLib.dll
	7.26.2.1 Implementation in C++

	7.26.3 STPadLibNet.dll
	7.26.3.1 Implementation in C#
	7.26.3.2 Implementation in Visual Basic

	7.27 SensorClearKeypadEntries method
	7.27.1 STPadCapt.ocx
	7.27.1.1 Implementation in C#
	7.27.1.2 Implementation in Visual Basic

	7.27.2 STPadLib.dll
	7.27.2.1 Implementation in C++

	7.27.3 STPadLibNet.dll
	7.27.3.1 Implementation in C#
	7.27.3.2 Implementation in Visual Basic

	7.28 SensorStartTimer method
	7.28.1 STPadCapt.ocx
	7.28.1.1 Implementation in C#
	7.28.1.2 Implementation in Visual Basic

	7.28.2 STPadLib.dll
	7.28.2.1 Implementation in C++

	7.28.3 STPadLibNet.dll
	7.28.3.1 Implementation in C#
	7.28.3.2 Implementation in Visual Basic

	7.29 SensorStopTimer method
	7.29.1 STPadCapt.ocx
	7.29.1.1 Implementation in C#
	7.29.1.2 Implementation in Visual Basic

	7.29.2 STPadLib.dll
	7.29.2.1 Implementation in C++

	7.29.3 STPadLibNet.dll
	7.29.3.1 Implementation in C#
	7.29.3.2 Implementation in Visual Basic

	7.30 SignatureSetSecureMode method
	7.30.1 STPadCapt.ocx
	7.30.1.1 Implementation in C#
	7.30.1.2 Implementation in Visual Basic

	7.30.2 STPadLib.dll
	7.30.2.1 Implementation in C++

	7.30.3 STPadLibNet.dll
	7.30.3.1 Implementation in C#
	7.30.3.2 Implementation in Visual Basic

	7.31 SignatureStart method
	7.31.1 STPadCapt.ocx
	7.31.1.1 Implementation in C#
	7.31.1.2 Implementation in Visual Basic

	7.31.2 STPadLib.dll
	7.31.2.1 Implementation in C++

	7.31.3 STPadLibNet.dll
	7.31.3.1 Implementation in C#
	7.31.3.2 Implementation in Visual Basic

	7.32 SignatureStop method
	7.32.1 STPadCapt.ocx
	7.32.1.1 Implementation in C#
	7.32.1.2 Implementation in Visual Basic

	7.32.2 STPadLib.dll
	7.32.2.1 Implementation in C++

	7.32.3 STPadLibNet.dll
	7.32.3.1 Implementation in C#
	7.32.3.2 Implementation in Visual Basic

	7.33 SignatureConfirm method
	7.33.1 STPadCapt.ocx
	7.33.1.1 Implementation in C#
	7.33.1.2 Implementation in Visual Basic

	7.33.2 STPadLib.dll
	7.33.2.1 Implementation in C++

	7.33.3 STPadLibNet.dll
	7.33.3.1 Implementation in C#
	7.33.3.2 Implementation in Visual Basic

	7.34 SignatureRetry method
	7.34.1 STPadCapt.ocx
	7.34.1.1 Implementation in C#
	7.34.1.2 Implementation in Visual Basic

	7.34.2 STPadLib.dll
	7.34.2.1 Implementation in C++

	7.34.3 STPadLibNet.dll
	7.34.3.1 Implementation in C#
	7.34.3.2 Implementation in Visual Basic

	7.35 SignatureCancel method
	7.35.1 STPadCapt.ocx
	7.35.1.1 Implementation in C#
	7.35.1.2 Implementation in Visual Basic

	7.35.2 STPadLib.dll
	7.35.2.1 Implementation in C++

	7.35.3 STPadLibNet.dll
	7.35.3.1 Implementation in C#
	7.35.3.2 Implementation in Visual Basic

	7.36 SignatureGetSignData method
	7.36.1 STPadCapt.ocx
	7.36.1.1 Implementation in C#
	7.36.1.2 Implementation in Visual Basic

	7.36.2 STPadLib.dll
	7.36.2.1 Implementation in C++

	7.36.3 STPadLibNet.dll
	7.36.3.1 Implementation in C#
	7.36.3.2 Implementation in Visual Basic

	7.37 SignatureGetIsoData method
	7.37.1 STPadCapt.ocx
	7.37.1.1 Implementation in C#
	7.37.1.2 Implementation in Visual Basic

	7.37.2 STPadLib.dll
	7.37.2.1 Implementation in C++

	7.37.3 STPadLibNet.dll
	7.37.3.1 Implementation in C#
	7.37.3.2 Implementation in Visual Basic

	7.38 SignatureSaveAsStream/SignatureSaveAsFile method
	7.39 SignatureSaveAsStreamEx / SignatureSaveAsFileEx method
	7.39.1 STPadCapt.ocx
	7.39.1.1 Implementation in C#
	7.39.1.2 Implementation in Visual Basic

	7.39.2 STPadLib.dll
	7.39.2.1 Implementation in C++

	7.39.3 STPadLibNet.dll
	7.39.3.1 Implementation in C#
	7.39.3.2 Implementation in Visual Basic

	7.40 SignatureGetBounds method
	7.40.1 STPadCapt.ocx
	7.40.1.1 Implementation in C#
	7.40.1.2 Implementation in Visual Basic

	7.40.2 STPadLib.dll
	7.40.2.1 Implementation in C++

	7.40.3 STPadLibNet.dll
	7.40.3.1 Implementation in C#
	7.40.3.2 Implementation in Visual Basic

	7.41 SignatureScaleToDisplay method
	7.41.1 STPadCapt.ocx
	7.41.1.1 Implementation in C#
	7.41.1.2 Implementation in Visual Basic

	7.41.2 STPadLib.dll
	7.41.2.1 Implementation in C++

	7.41.3 STPadLibNet.dll
	7.41.3.1 Implementation in C#
	7.41.3.2 Implementation in Visual Basic

	7.42 DisplayErase method
	7.42.1 STPadCapt.ocx
	7.42.1.1 Implementation in C#
	7.42.1.2 Implementation in Visual Basic

	7.42.2 STPadLib.dll
	7.42.2.1 Implementation in C++

	7.42.3 STPadLibNet.dll
	7.42.3.1 Implementation in C#
	7.42.3.2 Implementation in Visual Basic

	7.43 DisplayEraseRect method
	7.43.1 STPadCapt.ocx
	7.43.1.1 Implementation in C#
	7.43.1.2 Implementation in Visual Basic

	7.43.2 STPadLib.dll
	7.43.2.1 Implementation in C++

	7.43.3 STPadLibNet.dll
	7.43.3.1 Implementation in C#
	7.43.3.2 Implementation in Visual Basic

	7.44 DisplayConfigPen method
	7.44.1 STPadCapt.ocx
	7.44.1.1 Implementation in C#
	7.44.1.2 Implementation in Visual Basic

	7.44.2 STPadLib.dll
	7.44.2.1 Implementation in C++

	7.44.3 STPadLibNet.dll
	7.44.3.1 Implementation in C#
	7.44.3.2 Implementation in Visual Basic

	7.45 DisplaySetFont method
	7.45.1 STPadCapt.ocx
	7.45.1.1 Implementation in C#
	7.45.1.2 Implementation in Visual Basic

	7.45.2 STPadLib.dll
	7.45.2.1 Implementation in C++

	7.45.3 STPadLibNet.dll
	7.45.3.1 Implementation in C#
	7.45.3.2 Implementation in Visual Basic

	7.46 DisplaySetFontColor method
	7.46.1 STPadCapt.ocx
	7.46.1.1 Implementation in C#
	7.46.1.2 Implementation in Visual Basic

	7.46.2 STPadLib.dll
	7.46.2.1 Implementation in C++

	7.46.3 STPadLibNet.dll
	7.46.3.1 Implementation in C#
	7.46.3.2 Implementation in Visual Basic

	7.47 DisplaySetTarget method
	7.47.1 STPadCapt.ocx
	7.47.1.1 Implementation in C#
	7.47.1.2 Implementation in Visual Basic

	7.47.2 STPadLib.dll
	7.47.2.1 Implementation in C++

	7.47.3 STPadLibNet.dll
	7.47.3.1 Implementation in C#
	7.47.3.2 Implementation in Visual Basic

	7.48 DisplaySetText method
	7.48.1 STPadCapt.ocx
	7.48.1.1 Implementation in C#
	7.48.1.2 Implementation in Visual Basic

	7.48.2 STPadLib.dll
	7.48.2.1 Implementation in C++

	7.48.3 STPadLibNet.dll
	7.48.3.1 Implementation in C#
	7.48.3.2 Implementation in Visual Basic

	7.49 DisplaySetTextInRect method
	7.49.1 STPadCapt.ocx
	7.49.1.1 Implementation in C#
	7.49.1.2 Implementation in Visual Basic

	7.49.2 STPadLib.dll
	7.49.2.1 Implementation in C++

	7.49.3 STPadLibNet.dll
	7.49.3.1 Implementation in C#
	7.49.3.2 Implementation in Visual Basic

	7.50 DisplaySetImage / DisplaySetImageFromFile method
	7.50.1 STPadCapt.ocx
	7.50.1.1 Implementation in C#
	7.50.1.2 Implementation in Visual Basic

	7.50.2 STPadLib.dll
	7.50.2.1 Implementation in C++

	7.50.3 STPadLibNet.dll
	7.50.3.1 Implementation in C#
	7.50.3.2 Implementation in Visual Basic

	7.51 DisplaySetPDF method
	7.51.1 STPadCapt.ocx
	7.51.1.1 Implementation in C#
	7.51.1.2 Implementation in Visual Basic

	7.51.2 STPadLib.dll
	7.51.2.1 Implementation in C++

	7.51.3 STPadLibNet.dll
	7.51.3.1 Implementation in C#
	7.51.3.2 Implementation in Visual Basic

	7.52 DisplaySetImageFromStore method
	7.52.1 STPadCapt.ocx
	7.52.1.1 Implementation in C#
	7.52.1.2 Implementation in Visual Basic

	7.52.2 STPadLib.dll
	7.52.2.1 Implementation in C++

	7.52.3 STPadLibNet.dll
	7.52.3.1 Implementation in C#
	7.52.3.2 Implementation in Visual Basic

	7.53 DisplaySetOverlayRect method
	7.53.1 STPadCapt.ocx
	7.53.1.1 Implementation in C#
	7.53.1.2 Implementation in Visual Basic

	7.53.2 STPadLib.dll
	7.53.2.1 Implementation in C++

	7.53.3 STPadLibNet.dll
	7.53.3.1 Implementation in C#
	7.53.3.2 Implementation in Visual Basic

	7.54 DisplaySetScrollPos method
	7.54.1 STPadCapt.ocx
	7.54.1.1 Implementation in C#
	7.54.1.2 Implementation in Visual Basic

	7.54.2 STPadLib.dll
	7.54.2.1 Implementation in C++

	7.54.3 STPadLibNet.dll
	7.54.3.1 Implementation in C#
	7.54.3.2 Implementation in Visual Basic

	7.55 DisplayGetScrollPos method
	7.55.1 STPadCapt.ocx
	7.55.1.1 Implementation in C#
	7.55.1.2 Implementation in Visual Basic

	7.55.2 STPadLib.dll
	7.55.2.1 Implementation in C++

	7.55.3 STPadLibNet.dll
	7.55.3.1 Implementation in C#
	7.55.3.2 Implementation in Visual Basic

	7.56 DisplaySaveImageAsStream / DisplaySaveImageAsFile method
	7.56.1 STPadCapt.ocx
	7.56.1.1 Implementation in C#
	7.56.1.2 Implementation in Visual Basic

	7.56.2 STPadLib.dll
	7.56.2.1 Implementation in C++

	7.56.3 STPadLibNet.dll
	7.56.3.1 Implementation in C#
	7.56.3.2 Implementation in Visual Basic

	7.57 DisplaySetStandbyImage / DisplaySetStandbyImageFromFile method
	7.57.1 STPadCapt.ocx
	7.57.1.1 Implementation in C#
	7.57.1.2 Implementation in Visual Basic

	7.57.2 STPadLib.dll
	7.57.2.1 Implementation in C++

	7.57.3 STPadLibNet.dll
	7.57.3.1 Implementation in C#
	7.57.3.2 Implementation in Visual Basic

	7.58 DisplaySetStandbyImageEx / DisplaySetStandbyImageFromFileEx method
	7.58.1 STPadCapt.ocx
	7.58.1.1 Implementation in C#
	7.58.1.2 Implementation in Visual Basic

	7.58.2 STPadLib.dll
	7.58.2.1 Implementation in C++

	7.58.3 STPadLibNet.dll
	7.58.3.1 Implementation in C#
	7.58.3.2 Implementation in Visual Basic

	7.59 DisplayConfigSlideShow method
	7.59.1 STPadCapt.ocx
	7.59.1.1 Implementation in C#
	7.59.1.2 Implementation in Visual Basic

	7.59.2 STPadLib.dll
	7.59.2.1 Implementation in C++

	7.59.3 STPadLibNet.dll
	7.59.3.1 Implementation in C#
	7.59.3.2 Implementation in Visual Basic

	7.60 DisplayConfigSlideShowEx method
	7.60.1 STPadCapt.ocx
	7.60.1.1 Implementation in C#
	7.60.1.2 Implementation in Visual Basic

	7.60.2 STPadLib.dll
	7.60.2.1 Implementation in C++

	7.60.3 STPadLibNet.dll
	7.60.3.1 Implementation in C#
	7.60.3.2 Implementation in Visual Basic

	7.61 DisplayGetStandbyId method
	7.61.1 STPadCapt.ocx
	7.61.1.1 Implementation in C#
	7.61.1.2 Implementation in Visual Basic

	7.61.2 STPadLib.dll
	7.61.2.1 Implementation in C++

	7.61.3 STPadLibNet.dll
	7.61.3.1 Implementation in C#
	7.61.3.2 Implementation in Visual Basic

	7.62 DisplaySetBacklight method
	7.62.1 STPadCapt.ocx
	7.62.1.1 Implementation in C#
	7.62.1.2 Implementation in Visual Basic

	7.62.2 STPadLib.dll
	7.62.2.1 Implementation in C++

	7.62.3 STPadLibNet.dll
	7.62.3.1 Implementation in C#
	7.62.3.2 Implementation in Visual Basic

	7.63 ControlSetLogDirectory method
	7.63.1 STPadCapt.ocx
	7.63.1.1 Implementation in C#
	7.63.1.2 Implementation in Visual Basic

	7.63.2 STPadLib.dll
	7.63.2.1 Implementation in C++

	7.63.3 STPadLibNet.dll
	7.63.3.1 Implementation in C#
	7.63.3.2 Implementation in Visual Basic

	7.64 ControlGetVersion method
	7.65 ControlErase method
	7.65.1 STPadCapt.ocx
	7.65.1.1 Implementation in C#
	7.65.1.2 Implementation in Visual Basic

	7.65.2 STPadLib.dll
	7.65.3 STPadLibNet.dll
	7.65.3.1 Implementation in C#
	7.65.3.2 Implementation in Visual Basic

	7.66 ControlSetHotspotMode method
	7.66.1 STPadCapt.ocx
	7.66.1.1 Implementation in C#
	7.66.1.2 Implementation in Visual Basic

	7.66.2 STPadLib.dll
	7.66.3 STPadLibNet.dll
	7.66.3.1 Implementation in C#
	7.66.3.2 Implementation in Visual Basic

	7.67 ControlGetErrorString method
	7.67.1 STPadCapt.ocx
	7.67.1.1 Implementation in C#
	7.67.1.2 Implementation in Visual Basic

	7.67.2 STPadLib.dll
	7.67.2.1 Implementation in C++

	7.67.3 STPadLibNet.dll

	7.68 ControlSetSTPadLib method
	7.68.1 STPadCapt.ocx
	7.68.2 STPadLib.dll
	7.68.3 STPadLibNet.dll
	7.68.3.1 Implementation in C#
	7.68.3.2 Implementation in Visual Basic

	7.69 ControlSetCallback method
	7.69.1 STPadCapt.ocx
	7.69.2 STPadLib.dll
	7.69.2.1 Implementation in C++

	7.69.3 STPadLibNet.dll

	7.70 ControlExit method
	7.70.1 STPadCapt.ocx
	7.70.2 STPadLib.dll
	7.70.2.1 Implementation in C++

	7.70.3 STPadLibNet.dll

	7.71 RSAGenerateSigningCert/RSAGenerateSigningCert method
	7.71.1 STPadCapt.ocx
	7.71.1.1 Implementation in C#
	7.71.1.2 Implementation in Visual Basic

	7.71.2 STPadLib.dll
	7.71.2.1 Implementation in C++

	7.71.3 STPadLibNet.dll
	7.71.3.1 Implementation in C#
	7.71.3.2 Implementation in Visual Basic

	7.72 RSASetSigningCert/RSASetSigningCertPw method
	7.72.1 STPadCapt.ocx
	7.72.1.1 Implementation in C#
	7.72.1.2 Implementation in Visual Basic

	7.72.2 STPadLib.dll
	7.72.2.1 Implementation in C++

	7.72.3 STPadLibNet.dll
	7.72.3.1 Implementation in C#
	7.72.3.2 Implementation in Visual Basic

	7.73 RSASaveSigningCertAsStream / RSASaveSigningCertAsFile method
	7.73.1 STPadCapt.ocx
	7.73.1.1 Implementation in C#
	7.73.1.2 Implementation in Visual Basic

	7.73.2 STPadLib.dll
	7.73.2.1 Implementation in C++

	7.73.3 STPadLibNet.dll
	7.73.3.1 Implementation in C#
	7.73.3.2 Implementation in Visual Basic

	7.74 RSASetHash method
	7.74.1 STPadCapt.ocx
	7.74.1.1 Implementation in C#
	7.74.1.2 Implementation in Visual Basic

	7.74.2 STPadLib.dll
	7.74.2.1 Implementation in C++

	7.74.3 STPadLibNet.dll
	7.74.3.1 Implementation in C#
	7.74.3.2 Implementation in Visual Basic

	7.75 RSACreateDisplayHash method
	7.75.1 STPadCapt.ocx
	7.75.1.1 Implementation in C#
	7.75.1.2 Implementation in Visual Basic

	7.75.2 STPadLib.dll
	7.75.2.1 Implementation in C++

	7.75.3 STPadLibNet.dll
	7.75.3.1 Implementation in C#
	7.75.3.2 Implementation in Visual Basic

	7.76 RSACreateHashedImage method
	7.76.1 STPadCapt.ocx
	7.76.1.1 Implementation in C#
	7.76.1.2 Implementation in Visual Basic

	7.76.2 STPadLib.dll
	7.76.2.1 Implementation in C++

	7.76.3 STPadLibNet.dll
	7.76.3.1 Implementation in C#
	7.76.3.2 Implementation in Visual Basic

	7.77 RSASign/RSASignPw method
	7.77.1 STPadCapt.ocx
	7.77.1.1 Implementation in C#
	7.77.1.2 Implementation in Visual Basic

	7.77.2 STPadLib.dll
	7.77.2.1 Implementation in C++

	7.77.3 STPadLibNet.dll
	7.77.3.1 Implementation in C#
	7.77.3.2 Implementation in Visual Basic

	7.78 RSASetSignPassword method
	7.78.1 STPadCapt.ocx
	7.78.1.1 Implementation in C#
	7.78.1.2 Implementation in Visual Basic

	7.78.2 STPadLib.dll
	7.78.2.1 Implementation in C++

	7.78.3 STPadLibNet.dll
	7.78.3.1 Implementation in C#
	7.78.3.2 Implementation in Visual Basic

	7.79 RSASetEncryptionCert/RSASetEncryptionCertPw method
	7.79.1 STPadCapt.ocx
	7.79.1.1 Implementation in C#
	7.79.1.2 Implementation in Visual Basic

	7.79.2 STPadLib.dll
	7.79.2.1 Implementation in C++

	7.79.3 STPadLibNet.dll
	7.79.3.1 Implementation in C#
	7.79.3.2 Implementation in Visual Basic

	7.80 RSAGetEncryptionCertId method
	7.80.1 STPadCapt.ocx
	7.80.1.1 Implementation in C#
	7.80.1.2 Implementation in Visual Basic

	7.80.2 STPadLib.dll
	7.80.2.1 Implementation in C++

	7.80.3 STPadLibNet.dll
	7.80.3.1 Implementation in C#
	7.80.3.2 Implementation in Visual Basic

	7.81 RSAGetSignData method
	7.81.1 STPadCapt.ocx
	7.81.1.1 Implementation in C#
	7.81.1.2 Implementation in Visual Basic

	7.81.2 STPadLib.dll
	7.81.2.1 Implementation in C++

	7.81.3 STPadLibNet.dll
	7.81.3.1 Implementation in C#
	7.81.3.2 Implementation in Visual Basic

	7.82 RSADecryptSignData method
	7.82.1 STPadCapt.ocx
	7.82.1.1 Implementation in C#
	7.82.1.2 Implementation in Visual Basic

	7.82.2 STPadLib.dll
	7.82.2.1 Implementation in C++

	7.82.3 STPadLibNet.dll
	7.82.3.1 Implementation in C#
	7.82.3.2 Implementation in Visual Basic

	7.83 RSAExtractExtraData method
	7.83.1 STPadCapt.ocx
	7.83.1.1 Implementation in C#
	7.83.1.2 Implementation in Visual Basic

	7.83.2 STPadLib.dll
	7.83.2.1 Implementation in C++

	7.83.3 STPadLibNet.dll
	7.83.3.1 Implementation in C#
	7.83.3.2 Implementation in Visual Basic

	7.84 PDFLoad method
	7.84.1 STPadCapt.ocx
	7.84.1.1 Implementation in C#
	7.84.1.2 Implementation in Visual Basic

	7.84.2 STPadLib.dll
	7.84.2.1 Implementation in C++

	7.84.3 STPadLibNet.dll
	7.84.3.1 Implementation in C#
	7.84.3.2 Implementation in Visual Basic

	7.85 PDFGetPageCount method
	7.85.1 STPadCapt.ocx
	7.85.1.1 Implementation in C#
	7.85.1.2 Implementation in Visual Basic

	7.85.2 STPadLib.dll
	7.85.2.1 Implementation in C++

	7.85.3 STPadLibNet.dll
	7.85.3.1 Implementation in C#
	7.85.3.2 Implementation in Visual Basic

	7.86 PDFGetWidth method
	7.86.1 STPadCapt.ocx
	7.86.1.1 Implementation in C#
	7.86.1.2 Implementation in Visual Basic

	7.86.2 STPadLib.dll
	7.86.2.1 Implementation in C++

	7.86.3 STPadLibNet.dll
	7.86.3.1 Implementation in C#
	7.86.3.2 Implementation in Visual Basic

	7.87 PDFGetHeight method
	7.87.1 STPadCapt.ocx
	7.87.1.1 Implementation in C#
	7.87.1.2 Implementation in Visual Basic

	7.87.2 STPadLib.dll
	7.87.2.1 Implementation in C++

	7.87.3 STPadLibNet.dll
	7.87.3.1 Implementation in C#
	7.87.3.2 Implementation in Visual Basic

	7.88 PDFSelectRect method
	7.88.1 STPadCapt.ocx
	7.88.1.1 Implementation in C#
	7.88.1.2 Implementation in Visual Basic

	7.88.2 STPadLib.dll
	7.88.2.1 Implementation in C++

	7.88.3 STPadLibNet.dll
	7.88.3.1 Implementation in C#
	7.88.3.2 Implementation in Visual Basic

	7.89 PDFAddImage / PDFAddImageFromFile method
	7.89.1 STPadCapt.ocx
	7.89.1.1 Implementation in C#
	7.89.1.2 Implementation in Visual Basic

	7.89.2 STPadLib.dll
	7.89.2.1 Implementation in C++

	7.89.3 STPadLibNet.dll
	7.89.3.1 Implementation in C#
	7.89.3.2 Implementation in Visual Basic

	7.90 PDFRemoveImage method
	7.90.1 STPadCapt.ocx
	7.90.1.1 Implementation in C#
	7.90.1.2 Implementation in Visual Basic

	7.90.2 STPadLib.dll
	7.90.2.1 Implementation in C++

	7.90.3 STPadLibNet.dll
	7.90.3.1 Implementation in C#
	7.90.3.2 Implementation in Visual Basic

	8 Properties
	8.1 DeviceLedDefaultFlag property
	8.1.1 STPadCapt.ocx
	8.1.1.1 Implementation in C#
	8.1.1.2 Implementation in Visual Basic

	8.1.2 STPadLib.dll
	8.1.2.1 Implementation in C++

	8.1.3 STPadLibNet.dll
	8.1.3.1 Implementation in C#
	8.1.3.2 Implementation in Visual Basic

	8.2 ControlVersion property
	8.2.1 STPadCapt.ocx
	8.2.1.1 Implementation in C#
	8.2.1.2 Implementation in Visual Basic

	8.2.2 STPadLib.dll
	8.2.2.1 Implementation in C++

	8.2.3 STPadLibNet.dll
	8.2.3.1 Implementation in C#
	8.2.3.2 Implementation in Visual Basic

	8.3 ControlAppName property
	8.3.1 STPadCapt.ocx
	8.3.1.1 Implementation in C#
	8.3.1.2 Implementation in Visual Basic

	8.3.2 STPadLib.dll
	8.3.2.1 Implementation in C++

	8.3.3 STPadLibNet.dll
	8.3.3.1 Implementation in C#
	8.3.3.2 Implementation in Visual Basic

	8.4 ControlBackColor property
	8.4.1 STPadCapt.ocx
	8.4.1.1 Implementation in C#
	8.4.1.2 Implementation in Visual Basic

	8.4.2 STPadLib.dll
	8.4.3 STPadLibNet.dll
	8.4.3.1 Implementation in C#
	8.4.3.2 Implementation in Visual Basic

	8.5 ControlRectColor property
	8.5.1 STPadCapt.ocx
	8.5.1.1 Implementation in C#
	8.5.1.2 Implementation in Visual Basic

	8.5.2 STPadLib.dll
	8.5.3 STPadLibNet.dll
	8.5.3.1 Implementation in C#
	8.5.3.2 Implementation in Visual Basic

	8.6 ControlPenColor property
	8.6.1 STPadCapt.ocx
	8.6.1.1 Implementation in C#
	8.6.1.2 Implementation in Visual Basic

	8.6.2 STPadLib.dll
	8.6.3 STPadLibNet.dll
	8.6.3.1 Implementation in C#
	8.6.3.2 Implementation in Visual Basic

	8.7 ControlPenWidth property
	8.7.1 STPadCapt.ocx
	8.7.1.1 Implementation in C#
	8.7.1.2 Implementation in Visual Basic

	8.7.2 STPadLib.dll
	8.7.3 STPadLibNet.dll
	8.7.3.1 Implementation in C#
	8.7.3.2 Implementation in Visual Basic

	8.8 ControlMirrorDisplay property
	8.8.1 STPadCapt.ocx
	8.8.1.1 Implementation in C#
	8.8.1.2 Implementation in Visual Basic

	8.8.2 STPadLib.dll
	8.8.3 STPadLibNet.dll
	8.8.3.1 Implementation in C#
	8.8.3.2 Implementation in Visual Basic

	8.9 DisplayWidth property
	8.9.1 STPadCapt.ocx
	8.9.1.1 Implementation in C#
	8.9.1.2 Implementation in Visual Basic

	8.9.2 STPadLib.dll
	8.9.2.1 Implementation in C++

	8.9.3 STPadLibNet.dll
	8.9.3.1 Implementation in C#
	8.9.3.2 Implementation in Visual Basic

	8.10 DisplayHeight property
	8.10.1 STPadCapt.ocx
	8.10.1.1 Implementation in C#
	8.10.1.2 Implementation in Visual Basic

	8.10.2 STPadLib.dll
	8.10.2.1 Implementation in C++

	8.10.3 STPadLibNet.dll
	8.10.3.1 Implementation in C#
	8.10.3.2 Implementation in Visual Basic

	8.11 DisplayResolution property
	8.11.1 STPadCapt.ocx
	8.11.1.1 Implementation in C#
	8.11.1.2 Implementation in Visual Basic

	8.11.2 STPadLib.dll
	8.11.2.1 Implementation in C++

	8.11.3 STPadLibNet.dll
	8.11.3.1 Implementation in C#
	8.11.3.2 Implementation in Visual Basic

	8.12 DisplayTargetWidth property
	8.12.1 STPadCapt.ocx
	8.12.1.1 Implementation in C#
	8.12.1.2 Implementation in Visual Basic

	8.12.2 STPadLib.dll
	8.12.2.1 Implementation in C++

	8.12.3 STPadLibNet.dll
	8.12.3.1 Implementation in C#
	8.12.3.2 Implementation in Visual Basic

	8.13 DisplayTargetHeight property
	8.13.1 STPadCapt.ocx
	8.13.1.1 Implementation in C#
	8.13.1.2 Implementation in Visual Basic

	8.13.2 STPadLib.dll
	8.13.2.1 Implementation in C++

	8.13.3 STPadLibNet.dll
	8.13.3.1 Implementation in C#
	8.13.3.2 Implementation in Visual Basic

	8.14 DisplayScrollSpeed property
	8.14.1 STPadCapt.ocx
	8.14.1.1 Implementation in C#
	8.14.1.2 Implementation in Visual Basic

	8.14.2 STPadLib.dll
	8.14.2.1 Implementation in C++

	8.14.3 STPadLibNet.dll
	8.14.3.1 Implementation in C#
	8.14.3.2 Implementation in Visual Basic

	8.15 DisplayRotation property
	8.15.1 STPadCapt.ocx
	8.15.1.1 Implementation in C#
	8.15.1.2 Implementation in Visual Basic

	8.15.2 STPadLib.dll
	8.15.2.1 Implementation in C++

	8.15.3 STPadLibNet.dll
	8.15.3.1 Implementation in C#
	8.15.3.2 Implementation in Visual Basic

	8.16 SignatureState property
	8.16.1 STPadCapt.ocx
	8.16.1.1 Implementation in C#
	8.16.1.2 Implementation in Visual Basic

	8.16.2 STPadLib.dll
	8.16.2.1 Implementation in C++

	8.16.3 STPadLibNet.dll
	8.16.3.1 Implementation in C#
	8.16.3.2 Implementation in Visual Basic

	8.17 RSASignPasswordLength property
	8.17.1 STPadCapt.ocx
	8.17.1.1 Implementation in C#
	8.17.1.2 Implementation in Visual Basic

	8.17.2 STPadLib.dll
	8.17.2.1 Implementation in C++

	8.17.3 STPadLibNet.dll
	8.17.3.1 Implementation in C#
	8.17.3.2 Implementation in Visual Basic

	8.18 SignatureSignData property

	9 Events
	9.1 DeviceDisconnected event
	9.1.1 STPadCapt.ocx
	9.1.1.1 Implementation in C#
	9.1.1.2 Implementation in Visual Basic

	9.1.2 STPadLib.dll
	9.1.2.1 Implementation in C++

	9.1.3 STPadLibNet.dll
	9.1.3.1 Implementation in C#
	9.1.3.2 Implementation in Visual Basic

	9.2 SignatureDataReceived event
	9.2.1 STPadCapt.ocx
	9.2.1.1 Implementation in C#
	9.2.1.2 Implementation in Visual Basic

	9.2.2 STPadLib.dll
	9.2.2.1 Implementation in C++

	9.2.3 STPadLibNet.dll
	9.2.3.1 Implementation in C#
	9.2.3.2 Implementation in Visual Basic

	9.3 SensorHotSpotPressed event
	9.3.1 STPadCapt.ocx
	9.3.1.1 Implementation in C#
	9.3.1.2 Implementation in Visual Basic

	9.3.2 STPadLib.dll
	9.3.2.1 Implementation in C++

	9.3.3 STPadLibNet.dll
	9.3.3.1 Implementation in C#
	9.3.3.2 Implementation in Visual Basic

	9.4 Event SensorTimeoutOccured
	9.4.1 STPadCapt.ocx
	9.4.1.1 Implementation in C#
	9.4.1.2 Implementation in Visual Basic

	9.4.2 STPadLib.dll
	9.4.2.1 Implementation in C++

	9.4.3 STPadLibNet.dll
	9.4.3.1 Implementation in C#
	9.4.3.2 Implementation in Visual Basic

	9.5 DisplayScrollPosChanged event
	9.5.1 STPadCapt.ocx
	9.5.1.1 Implementation in C#
	9.5.1.2 Implementation in Visual Basic

	9.5.2 STPadLib.dll
	9.5.2.1 Implementation in C++

	9.5.3 STPadLibNet.dll
	9.5.3.1 Implementation in C#
	9.5.3.2 Implementation in Visual Basic

