

Guide_SIGAPILI_20210105_ENG 1

Guide for Developers
signoPAD API Linux

Software components for communication with
signotec Sigma (Evolis Sig100), Omega (Evolis
Sig200), Gamma (Evolis SigActiv) and Alpha LCD pads

This product and its documentation are manufactured by ©signotec GmbH
and distributed by ©Evolis

Guide_SIGAPILI_20210105_ENG 2

Contents

1 FUNCTION OVERVIEW 5

2 SYSTEM REQUIREMENTS 6

2.1 SIGNOPAD API COMPONENTS FOR LINUX 6
2.2 SIGNOPAD API COMPONENTS FOR JAVA 6
2.3 SIGNOPAD API COMPONENTS FOR WINDOWS 6

3 GENERAL INFORMATION ON THE SIGNOPAD API 7

3.1 32- AND 64-BIT VARIANTS OF THE SIGNOPAD API 7
3.2 LIBSTPADLIB.SO 7
3.3 LIBSTCPIMAGEENGINE.SO 7
3.4 USING MULTIPLE INSTANCES 7
3.5 SIGNDATA STRUCTURES 8
3.6 NOTES FOR REDISTRIBUTION 8

4 DESCRIPTION OF POSSIBLE ERROR MESSAGES 9

5 INFORMATION ABOUT THE AVAILABLE IMAGE MEMORY 10

5.1 VOLATILE IMAGE MEMORY 10
5.2 NON-VOLATILE IMAGE MEMORY 11
5.3 COPYING BETWEEN IMAGE MEMORIES 12
5.4 THE TYPICAL PROCESS 12
5.5 THE STANDBY FEATURE 13

6 METHODS 15

6.1 STDEVICEGETCONNECTIONTYPE METHOD 15
6.2 STDEVICEGETCOUNT METHOD 16
6.3 STDEVICEGETINFO METHOD 16
6.4 STDEVICEGETVERSION METHOD 17
6.5 STDEVICEOPEN METHOD 17
6.6 STDEVICECLOSE METHOD 18
6.7 STDEVICESETLED METHOD 18
6.8 STSENSORGETSAMPLERATEMODE METHOD 19
6.9 STSENSORSETSAMPLERATEMODE METHOD 20
6.10 STSENSORSETSIGNRECT METHOD 20
6.11 STSENSORCLEARSIGNRECT METHOD 21
6.12 STSENSORADDHOTSPOT METHOD 21
6.13 STSENSORSETHOTSPOTMODE METHOD 22
6.14 STSENSORCLEARHOTSPOTS METHOD 23
6.15 STSENSORSTARTTIMER METHOD 23
6.16 STSENSORSTOPTIMER METHOD 24
6.17 STSIGNATURESTART METHOD 24
6.18 STSIGNATURESTOP METHOD 25
6.19 STSIGNATURECONFIRM METHOD 25
6.20 STSIGNATURERETRY METHOD 26
6.21 STSIGNATURECANCEL METHOD 26
6.22 STSIGNATUREGETSTATE METHOD 27
6.23 STSIGNATUREGETSIGNDATA METHOD 27
6.24 STSIGNATURESAVEASFILEEX METHOD 28
6.25 STSIGNATUREGETBOUNDS METHOD 30

Guide_SIGAPILI_20210105_ENG 3

6.26 STSIGNATURESCALETODISPLAY METHOD 31
6.27 STDISPLAYGETWIDTH METHOD 32
6.28 STDISPLAYGETHEIGHT METHOD 32
6.29 STDISPLAYGETTARGETWIDTH METHOD 32
6.30 STDISPLAYGETTARGETHEIGHT METHOD 33
6.31 STDISPLAYERASE METHOD 33
6.32 STDISPLAYERASERECT METHOD 33
6.33 STDISPLAYCONFIGPEN METHOD 34
6.34 STDISPLAYSETFONT METHOD 35
6.35 STDISPLAYSETFONTCOLOR METHOD 35
6.36 STDISPLAYSETTARGET METHOD 36
6.37 STDISPLAYSETTEXT METHOD 37
6.38 STDISPLAYSETTEXTINRECT METHOD 38
6.39 STDISPLAYSETIMAGEFROMFILE METHOD 39
6.40 STDISPLAYSETIMAGEFROMSTORE METHOD 40
6.41 STDISPLAYSETOVERLAYRECT METHOD 41
6.42 STDISPLAYSETSCROLLPOS METHOD 42
6.43 STDISPLAYGETSCROLLPOS METHOD 42
6.44 STDISPLAYSAVEIMAGEASFILE METHOD 43
6.45 STDISPLAYSETSTANDBYIMAGEFROMFILE METHOD 44
6.46 STDISPLAYCONFIGSLIDESHOW METHOD 45
6.47 STDISPLAYGETSTANDBYID METHOD 45
6.48 STCONTROLGETVERSION METHOD 46
6.49 STCONTROLSETAPPNAME METHOD 46
6.50 STCONTROLGETERRORSTRING METHOD 47
6.51 STCONTROLSETCALLBACK METHOD 48
6.52 STCONTROLEXIT METHOD 49

7 EVENTS 51

7.1 DEVICEDISCONNECTED EVENT 51
7.2 SIGNATUREDATARECEIVED EVENT 51
7.3 SENSORHOTSPOTPRESSED EVENT 52
7.4 SENSORTIMEOUTOCCURED EVENT 52
7.5 DISPLAYSCROLLPOSCHANGED EVENT 52

Guide_SIGAPILI_20210105_ENG 4

Legal notice

All rights reserved. This document and the components it describes are products copyrighted by
signotec GmbH based in Ratingen, Germany. Reproduction of this documentation, in part or in whole, is
subject to prior written approval from signotec GmbH. All hardware and software names used are trade
names and/or trademarks of their respective manufacturers/owners. Subject to change at any time
without notice. We assume no liability for any errors that may appear in this documentation.

Models Matching Table

Evolis Model Name Signotec Model Name
Evolis Sig100 Lite Sigma Lite

Evolis Sig100 Sigma
Evolis Sig200 Omega
Evolis SigActiv Gamma

Document History

Evolis Document Name and
Version

Signotec Document Name and
Version

Guide_SIGAPILI_20210105_ENG signoPAD-
API_linux_documentation_EN_v.1.3

Guide_SIGAPILI_20210105_ENG 5

1 Function overview

The signoPAD API contains a non-visual interface, allowing programmers to implement a wide range of
functions for capturing electronic signatures and displaying graphics, text and buttons on an Evolis LCD
pad in their own programs.

The following table provides an overview of the components included in the signoPAD API.

File name Short description Version
libSTPadLib.so Non-visual native library for activating the Sigma, Omega,

Gamma and Alpha model types.
8.2.1.16

libSTCPImageEngin
e.so

Non-visual native library with an interface for the CImg
template from http://cimg.eu.

-

property.ini Control file to set different kind of parameters for the pad
communication. In addition, debug logging can be
activated for the components listed above.

-

Sample application Application and source code in C++ to demonstrate the
functions of the STPad components.

-

Guide_SIGAPILI_20210105_ENG 6

2 System requirements

2.1 signoPAD API components for Linux

The signoPAD API for Linux can be run on all Linux versions from Kernel 3.19.0 onwards. It was tested
under the following systems and development environments:

- Ubuntu 15.04
- Eclipse Luna 4.4.2

2.1.1 Dependencies

- libX11
- libusb-1.0
- libpthread
- libtiff
- libpng12
- libcairo
- libpangocairo-1.0

2.2 signoPAD API components for Java

Please use signoPAD API Java, which you can download for free on our website.

2.3 signoPAD API components for Windows

Please use signoPAD API Windows, which you can download for free on our website.

Guide_SIGAPILI_20210105_ENG 7

3 General information on the signoPAD API

3.1 32- and 64-bit variants of the signoPAD API

The signoPAD API is available in both x86 (32-bit) and x64 (64-bit).

The x86 version only contains components and applications that were compiled for the x86 platform.

The x64 version only contains components and applications that were compiled for the x64 platform. All
components and applications can only be used on 64-bit versions of Linux.

Since the two versions of the components differ neither in name nor in the interface, it does not matter
which one is used for development purposes. But the appropriate component for the present target
platform must be used in the implementation. The following table shows which version of the
components must be used for specific operating system or application versions:

Operating system Application Component
x86 (32 Bit) x86 (32 Bit) x86 (32 Bit)
x64 (64 Bit) x64 (64 Bit) x64 (64 Bit)

3.2 libSTPadLib.so

libSTPadLib.so is a native and dynamically loadable library. A C header file (STPadLib.h) is included.
Initialisation is performed automatically as soon as the library is activated; before it is unloaded again,
the STControlExit() method must be called to release resources used internally.

The library must be in the libs search path at runtime. For Ubuntu, the path is: /usr/local/lib.

3.3 libSTCPImageEngine.so

libSTCPImageEngine.so is a native and dynamically loadable library. The library is an interface for the
CImg template from http://cimg.eu.

The library must be in the libs search path at runtime. For Ubuntu, the path is: /usr/local/lib.

3.4 Using multiple instances

The components included in the signoPAD API can be instantiated more than once. If multiple instances
of a component are used in different memory areas (for example, different programs), these instances
are completely independent of each other and there is nothing else to be aware of.

If multiple instances of a component are used in the same memory area, please note the following:

- When DeviceGetCount() is called, it is valid for all instances and therefore only needs to be
executed in one instance.

- If a connection to a device has already been opened by an instance, only the previously determined
value is returned when DeviceGetCount() is called in another instance, i.e., no new search is
carried out.

- A maximum of eight connections can be opened simultaneously. In general, there is therefore no
point in using more than eight instances simultaneously.

Guide_SIGAPILI_20210105_ENG 8

3.5 SignData structures

The signoPAD API components can return a captured signature as a SignData data structure. This
format is an encrypted, compressed, biometric structure that can be stored in a database or as a tag in a
TIFF or PDF document.

3.6 Notes for redistribution

You can, of course, redistribute individual files from the signoPAD API in a separate package. Essentially,
only the ‘STPad’ component used by your application, possibly the proterty.ini file, is required to support
the Evolis Sigma, Omega, Gamma and Alpha LCD signature pads.

The signoPAD API package consists of the following files:

Component Installation path
libSTPadLib.so /usr/local/lib für Ubuntu

/usr/lib64 für CentOS x64
/usr/lib für CentOS x86

libSTCPImageEngine.so /usr/local/lib für Ubuntu
/usr/lib64 für CentOS x64
/usr/lib für CentOS x86

STPadLibDemoApp -
property.h Next to STPadLibDemoApp

STPadLibDemoApp serves an example of how the signoPAD API should be used. The demo is included
with the C++ source code in the signoPAD API package. The source code can be compiled with an
Eclipse development environment, and the demo can be subsequently built. It is a simple console
program. At the beginning, the demo searches for Evolis LCD pads, and the first pad found is used. The
signature process is initiated, and the signature is captured and saved as a PNG image and SignData files.

Guide_SIGAPILI_20210105_ENG 9

4 Description of possible error messages

Most of the libSTPadLib.so methods return an integer value, which is always negative in the case of an
error. A description of the respective error messages is provided in the following table. By calling the
STControlGetErrorString() method, you can get an error description at runtime.

The error descriptions are available in German, English, French and Italian.

Error Description
-1 A NULL pointer was passed.
-3 One of the parameters that were passed contains an invalid value.
-4 The signing pad is already being used by another application.
-5 No connection has been opened to this signature pad.
-6 A connection has already been opened.
-7 No further connections can be opened.
-8 No device with this ID is connected.
-9 The LED colour that was passed cannot be set.
-12 The function could not be executed because the signature capture process is running.
-13 No further hotspots can be added
-14 The coordinates are overlapping with the signature window or one of the hotspots

already set.
-15 The function could not be executed because no signature capture area has been set.
-17 The function could not be executed because no signature capture process was started.
-18 An error occurred while attempting to reserve memory.
-19 An error occurred while initialising a system resource.
-20 An error occurred while communicating with the signing pad.
-21 The rectangle that was passed is invalid.
-22 No compatible devices connected or the connection to a device has been cut.
-25 The connected device does not support this function or one of the parameters.
-26 Error while reading or writing a file.
-93 The function could not be executed because an overlay rectangle is set.
-94 The function could not be executed because the display content is scrolled.
-95 The function could not be executed because it would have activated the scroll mode

that is not possible if a hotspot outside the overlay rectangle is defined.
-97 An error occurred during initialisation. Please restart the software.

Guide_SIGAPILI_20210105_ENG 10

5 Information about the available image memory

The Evolis LCD Signature Pads have several image memory, which can be used by different methods. An
image memory has at least the size of the display and can store one picture in a maximum of this size.
Adding another image overrides the areas it overlaps with the existing memory content. Adding
multiple images to one memory can therefore create a collage.

Depending on the model, a different number of volatile and non-volatile memories are available.

5.1 Volatile image memory

All Evolis LCD Signature Pads have at least two volatile image memories, one foreground buffer
containing the current display content and one background buffer, which can be used to prepare the
display content. It can be written in both of the buffers.

The content of the volatile image memory is lost when you close the connection to the device.

5.1.1 Model type Sigma

The two volatile image memories have the size of the display (320 x 160 pixels).

The transmission and representation of images is usually so fast that there is no visible lag. For more
complex representations that consist of several individual images, it may be useful to first save them in
the background buffer before moving them to the foreground buffer.

5.1.2 Model type Omega

The Omega model has three volatile image memories, two that have the doubled size of the display (640
x 960 pixels) to be used as foreground and background buffers and one that has the size of the display
(640 x 480 pixels) to be used as overlay buffer. Its contents can be overlaid over the current display
content.

The speed of displaying a picture in Omega model depends on the size and content of the images,
usually it‘s visible. Therefore, images should always be stored first in the background buffer and then
moved into the foreground buffer.

5.1.3 Gamma model

The Gamma model has three volatile image memories, two that are larger than the display (800 x 1440
pixels) to be used as foreground and background buffers and one that has the size of the display (800 x
480 pixels) to be used as overlay buffer. Its contents can be overlaid over the current screen content.

With the Gamma model, an image is only displayed after it has been transferred; the image composition
is not visible. The speed of the image transmission depends on the size and content of the images. For
more complex representations that consist of several individual images, it is generally useful to first save
them in the background buffer before copying them into the foreground buffer.

5.1.4 Model type Alpha

The Omega model has three volatile image memories, two that are larger than the display (2048 x 2048
pixels) to be used as foreground and background buffers and one that has the size of the display (768 x
1366 pixels) to be used as overlay buffer. Its contents can be overlaid over the current screen content.

Guide_SIGAPILI_20210105_ENG 11

With the Alpha model, an image is only displayed after it has been transferred; the image composition is
not visible. The speed of the image transmission depends on the size and content of the images. For
more complex representations that consist of several individual images, it is generally useful to first save
them in the background buffer before copying them into the foreground buffer.

5.2 Non-volatile image memory

Depending on the model, a different number of non-volatile memories are available. The saving of
images in non-volatile image memory lasts longer than storing in volatile image memory, but the
content remains unchanged even after switching off the device. An intelligent memory management
detects whether an image to be stored is already stored in the device so that only the first time it’s
stored it comes to a delay.

5.2.1 Model type Sigma

The Sigma model has one non-volatile image memory in the size of the display (320 x 160 pixels), which
can only be used for the standby image. Due to the rapid transmission and display of pictures, it is not
necessary to be able to save other images permanently.

5.2.2 Model type Omega

The Omega model has eleven non-volatile image memories, which can be used for the standby image,
the slide show and optimizations of the program. The memories, used for the standby image or the slide
show, are read-only and can be freed only by disabling the standby image or the slide show.

One non-volatile image memory has the doubled size of the display (640 x 960 pixels), ten memories
have the size of the display (640 x 480 pixels).

To use a non-volatile memory, this must be reserved first. This is done by calling the
STDisplaySetTarget() method. The size of the currently selected memory can be queried using
the STDisplayGetTargetWidth() and STDisplayGetTargetHeight() methods.

5.2.3 Gamma model

The Gamma model has ten non-volatile image memories, which can be used for the standby image, the
slide show and optimisations of the program. The memories, used for the standby image or the slide
show, are read-only and can be freed only by disabling the standby image or the slide show.

The ten non-volatile memories are the same size as the display (800 x 480 pixels).

To use a non-volatile memory, this must be reserved first. This is done by calling the
DisplaySetTarget() method. The size of the currently selected memory can be queried using the
STDisplayGetTargetWidth() and STDisplayGetTargetHeight() methods.

5.2.4 Model type Alpha

The Alpha model has ten non-volatile image memories, which can be used for the standby image, the
slide show and optimisations of the program. The memories, used for the standby image or the slide
show, are read-only and can be freed only by disabling the standby image or the slide show.

The ten non-volatile memories are the same size as the volatile memories (2048 x 2048 pixels).

Guide_SIGAPILI_20210105_ENG 12

To use a non-volatile memory, this must be reserved first. This is done by calling the
DisplaySetTarget() method. The size of the currently selected memory can be queried using the
STDisplayGetTargetWidth() and STDisplayGetTargetHeight() methods.

5.3 Copying between image memories

The contents can be copied between the most of the available image stores. The content of the
background buffer cannot be copied to the foreground buffer; it can only be moved. The contents of the
overlay buffer cannot be copied but only overlaid over the display content.

Typical copy operations are copying from a non-volatile image memory in a volatile image memory and
moving from the volatile background buffer into the foreground buffer. Copying an image within the
device is always faster than sending this image from the PC to the device. Please refer to the descriptions
of the STDisplaySetImageFromStore() and STDisplaySetOverlayRect() methods for
details.

5.4 The typical process

Most applications use the same images with possibly variable units (such as document-related texts) for
the signature process. It therefore makes sense to store images that are the same each time in one of the
non-volatile memory if possible. The following is the typical work flow for this scenario

First, the images are loaded, which will be permanently stored in the device, since they change rarely. A
memory is reserved by calling the STDisplaySetTarget() method with the
STPAD_TARGET_STANDARDSTORE value. The return value of the method is the ID of the memory
used. If no non-volatile image memory is available, the ID is returned as
STPAD_TARGET_BACKGROUND, which means that the background memory is set as an image
memory. This is always the case when using the Sigma model. When using the Omega, Gamma and
Alpha models, the number of available memories can be less than expected when a slide show is
configured.

Text and images that are added to a non-volatile memory are only saved locally to begin with and are
sent to the device only when STDisplaySetImageFromStore() or
STDisplayConfigSlideShow() is called in order to be able to compare the image (which may be
composed of several texts and images) with the image already stored in the device. Thus only when one
of these methods is called, there will be a noticeable delay.

LONG nTarget = STPAD_TARGET_STANDARDSTORE;
LONG nRc = STDisplaySetTarget(nTarget);
if (nRc < 0)
 return nRc;
nTarget = nRc;
nRc = STDisplaySetImageFromFile(10, 10, L"./1.png");
if (nRc < 0)
 return nRc;
nRc = STDisplaySetText(200, 160, kLeft, L"Signature:");
if (nRc < 0)
 return nRc;
nRc = STDisplaySetImageFromFile(220, 400, L"./2.png");
if (nRc < 0)
 return nRc

Guide_SIGAPILI_20210105_ENG 13

The content can now be copied to a volatile image memory, typically the background buffer
(STDisplaySetTarget(STPAD_TARGET_BACKGROUND)). If the images have already been written
to the background buffer because no non-volatile memory was available (see above), the
STDisplaySetImageFromStore() method will not function, however, it will also not produce any
errors and can therefore be safely called.

nRc = STDisplaySetTarget(STPAD_TARGET_BACKGROUND);
if (nRc < 0)
 return nRc;
nRc = STDisplaySetImageFromStore(nTarget);
if (nRc < 0)
 return nRc;

Now content, that change with every signature process, can be added to the background buffer.

nRc = STDisplaySetImageFromFile(120, 400, L"./3.png");
if (nRc < 0)
 return nRc;
nRc = STDisplaySetText(200, 160, kLeft, L"01.01.2010");
if (nRc < 0)
 return nRc;

In the background buffer there’s now a collage of two images and a text copied from a non-volatile
memory and an image and a text that have been sent from the PC. This collage can now be moved into
the foreground buffer and thus displayed on the screen. The total composition has happened before in
the background buffer and thus "invisible".

nRc = STDisplaySetTarget(STPAD_TARGET_FOREGROUND);
if (nRc < 0)
 return nRc;
nRc = STDisplaySetImageFromStore(STPAD_TARGET_BACKGROUND);
if (nRc < 0)
 return nRc;

The process described must be performed every time a connection is opened. When a connection is
closed all information about reserved memories is lost. Only information regarding which display
content is stored in which non-volatile memory remains saved on the device (even when it is switched
off).

5.5 The standby feature

The Evolis LCD signature pads (Omega, Gamma and Alpha models only) can display one or more images
automatically when not in use (no established connection). These images are stored permanently in the
device and they are displayed without launching any application on the PC.

Image memories that are used by the standby feature are write protected and cannot be used for by an
application.

5.5.1 Displaying a logo

In all devices, an image that is displayed automatically in standby can be stored permanently. Please
refer to the descriptions of the STDisplaySetStandbyImageFromFile() method for details.

Guide_SIGAPILI_20210105_ENG 14

5.5.2 Displaying a slide show

Alternatively, the Omega, Gamma and Alpha models can display a slide show containing up to eleven
(Omega) or ten (Gamma and Alpha) images. To configure a slide show, please follow these steps:

First, a standby mode that may be configured must be disabled by calling
STDisplayConfigSlideShow() in order to remove write protection from all images. The current
configuration can be queried with the STDisplayGetStandbyId() method.

Then any contents can be written to one or more of the non-volatile image memories (as described in
6.4). When all the contents have been written, the desired image memories must be configured using
the STDisplayConfigSlideShow() method.

Guide_SIGAPILI_20210105_ENG 15

6 Methods

Methods are named according to the following naming convention:

- Methods that set or query general hardware properties begin with ‘STDevice’
- Methods that set or query sensor properties begin with ‘STSensor’
- Methods that apply to the signature begin with ‘STSignature’
- Methods that set or query LCD properties begin with ‘STDisplay’
- Methods that set or query component properties begin with ‘STControl’

6.1 STDeviceGetConnectionType method

This method returns the type of connection via which a device is connected.

Available from Version 8.2.0.

LONG STDeviceGetConnectionType(LONG nIndex)

Parameter Values I/O Description
LONG nIndex >= 0 I Index of the device whose port number is to be

queried
Return value Values Description
LONG 0 HID

1 WinUSB
2 Serial
3 Ethernet
< 0 Error

6.1.1 Usage:

LONG nType = STDeviceGetConnectionType(0);
switch (nType)
{
 case 0:
 wprintf(L"The device is connected via HID.");
 break;
 case 1:
 wprintf(L"The device is connected via WinUSB.");
 break;
 case 2:
 wprintf(L"The device is connected to a serial port.");
 break;
 case 3:
 wprintf(L" The device is connected via IP.");
 break;
 default:
 wprintf(L"Error %d", nType);
 break;
}

Guide_SIGAPILI_20210105_ENG 16

6.2 STDeviceGetCount method

This method searches for connected devices, generates an internal index beginning with 0 and returns
the number of devices detected. This value should be cached so that the method only needs to be
called, if the number of connected devices has changed. A device’s index is retained until the method is
called again. The index can be assigned to a device via the information returned by
STDeviceGetInfo().

By default, a search will only be made for HID devices that are locally connected. A search will only be
made for other devices if this has been configured previously by calling up STDeviceSetComPort().

Please observe the relevant information in the ‘Using multiple instances’ section.

Available from Version 8.2.0.

LONG STDeviceGetCount()

Parameter Values I/O Description
- - - -
Return value Values Description
LONG >= 0 Number of devices detected

< 0 Error

6.2.1 Usage:

LONG nDeviceCount = STDeviceGetCount();
if (nDeviceCount < 0)
 wprintf(L"Error %d", nDeviceCount);
else
 wprintf(L"%d devices detected.", nDeviceCount);

6.3 STDeviceGetInfo method

You can use this method to retrieve the serial number and model type of a connected device in order to
uniquely identify it.

Available from Version 8.2.0.

LONG STDeviceGetInfo(WCHAR szSerial[16], LONG* pnType, LONG nIndex)

Parameter Values I/O Description
WCHAR
szSerial[16]

max. 16
chars

O Serial number

LONG* pnType 1 O ‘Sigma HID’ model type
2 O ‘Sigma serial’ model type
11 O ‘Omega HID’ model type
12 O ‘Omega serial’ model type
15 O ‘Gamma USB’ model type
16 O ‘Gamma serial’ model type
31 O ‘Alpha USB’ model type
32 O ‘Alpha serial’ model type
33 O ‘Alpha IP’ model type

Guide_SIGAPILI_20210105_ENG 17

other
O Reserved for further model types

LONG nIndex >= 0 I Index of the device whose information is to be
queried

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.3.1 Usage:

WCHAR szSerial[16];
LONG nType = 0;
LONG nRc = STDeviceGetInfo(szSerial, &nType, 0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
 wprintf(L"Type: %d, Serial: %s", nType, szSerial);

6.4 STDeviceGetVersion method

You can use this method to retrieve the version number of a connected device’s firmware. It is intended
primarily for support purposes.

Available from Version 8.2.0.

LONG STDeviceGetVersion(WCHAR szVersion[16], LONG nIndex)

Parameter Values I/O Description
WCHAR
szVersion[16]

max. 16
chars

O Firmware version number (major.minor)

LONG nIndex >= 0 I Index of the device whose information is to be
queried

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.4.1 Usage:

WCHAR szVersion[16];
LONG nRc = STDeviceGetVersion(szVersion, 0);
WCHAR szText[64];
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
 wprintf(L"Firmware: %s", szVersion);

6.5 STDeviceOpen method

This method opens a connection to a device.

Please observe the relevant information in the ‘Using multiple instances’ section.

Guide_SIGAPILI_20210105_ENG 18

Available from Version 8.2.0.

LONG STDeviceOpen(LONG nIndex, BOOL bEraseDisplay=TRUE)

Parameter Values I/O Description
LONG nIndex >= 0 I Index of the device to which a connection is to be

opened
BOOL
bEraseDisplay

true I The device display screen will be erased (Default)
false I The content of the display screen will not change;

the screen content displayed cannot be copied into
another image memory at a later stage (optional)

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.5.1 Usage:

LONG nRc = STDeviceOpen(0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.6 STDeviceClose method

This method closes the connection to a device. It can also be opened in another instance, provided it is
running in the same memory area as the instance that is currently being used. Before closing, a currently
running signature capture process is terminated and the backlight is switched off (if on).

Captured signature data is discarded.

Available from Version 8.2.0.

LONG STDeviceClose(LONG nIndex)

Parameter Values I/O Description
LONG nIndex >= 0 I Index of the device whose connection is to be

closed
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.6.1 Usage:

LONG nRc = STDeviceClose(0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.7 STDeviceSetLed method

This method sets the colour of the LED on the front of the pad. The
STDeviceSetLedDefaultFlag() method should be called with FALSE when this method is used
to ensure that the colour is not changed when STSignatureStart(), STSignatureCancel()

Guide_SIGAPILI_20210105_ENG 19

and STSignatureConfirm() are called. The LED always lights up yellow as soon as the device has
been detected by the PC operating system and is ready for use.

Available from Version 8.2.0.

LONG STDeviceSetLed(LONG nLedColor)

Parameter Values I/O Description
LONG nLedColor Bitmask containing one or more hexadecimal values from the

following list:
0x01 I Yellow
0x02 I Green

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

The following values defined in the header file can be used for the nLedColor parameter:

#define STPAD_LED_YELLOW 0x01
#define STPAD_LED_GREEN 0x02

6.7.1 Usage:

LONG nRc = STDeviceSetLed(STPAD_LED_YELLOW);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.8 STSensorGetSampleRateMode method

This method returns the configured sample rate with which the signature is captured.

Available from Version 8.2.0.

LONG STSensorGetSampleRateMode()

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 3 280 Hz

2 500 Hz
1 250 Hz
0 125 Hz
< 0 Error

Guide_SIGAPILI_20210105_ENG 20

6.8.1 Usage:

LONG nMode = STSensorGetSampleRateMode();
switch (nMode)
{
 case 0:
 wprintf(L"Sample rate is 125 Hz.");
 break;
 case 1:
 wprintf(L"Sample rate is 250 Hz.");
 break;
 case 2:
 wprintf(L"Sample rate is 500 Hz.");
 break;
 case 3:
 wprintf(L"Sample rate is 280 Hz.");
 break;
 default:
 wprintf(L"Error %d", nMode);
 break;
}

6.9 STSensorSetSampleRateMode method

This method sets the sample rate with which the signature is captured. The default setting is mode 1
(250 Hz) or mode 3 (280 Hz) when using the Alpha model. This mode provides high-quality signature
data while at the same time ensures that the data record is of moderate size. When using the Sigma,
Gamma and Omega models, this value can easily be set to 2 (500 Hz) for high-speed data lines.

Available from Version 8.2.0.

LONG STSensorSetSampleRateMode(LONG nMode)

Parameter Values I/O Description
LONG nMode 0 I 125 Hz (currently only Sigma, Gamma and Omega)

1 I 250 Hz (currently only Sigma, Gamma and Omega)
2 I 500 Hz (currently only Sigma, Gamma and Omega)
3 I 280 Hz (currently only Alpha)

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.9.1 Usage:

LONG nRc = STSensorSetSampleRateMode(1);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.10 STSensorSetSignRect method

This method defines the rectangle in which the signature is captured. If the rectangle overlaps one of the
hotspots that has been defined (see STSensorAddHotSpot()), an error is returned.

Guide_SIGAPILI_20210105_ENG 21

Available from Version 8.2.0.

LONG STSensorSetSignRect(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight)

Parameter Values I/O Description
LONG nLeft >= 0 I Left boundary; 0 is on the far left of the display
LONG nTop >= 0 I Upper boundary; 0 is at the top of the display
LONG nWidth > 3 I Width; STDisplayGetWidth() returns the width

of the LCD used
0 I Right boundary is automatically set to the maximum

value (right margin of the LCD)
LONG nHeight > 3 I Height; STDisplayGetHeight() returns the

height of the LCD used
0 I Lower boundary is automatically set to the

maximum value (lower margin of the LCD)
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.10.1 Usage:

LONG nRc = STSensorSetSignRect(0, 40, 0, 0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.11 STSensorClearSignRect method

This method erases the signature window.

Available from Version 8.2.0.

LONG STSensorClearSignRect()

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.11.1 Usage:

LONG nRc = STSensorClearSignRect();
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.12 STSensorAddHotSpot method

This method defines a rectangular subarea of the sensor surface that responds to user clicks. See also
STSensorHotSpotPressed(). The rectangle must lie in the area defined by
STDisplaySetOverlayRect() if a scroll hotspot has already been defined. It should not overlap
the defined signature window (see STSensorSetSignRect()) or a hotspot that was previously set.

Guide_SIGAPILI_20210105_ENG 22

Available from Version 8.2.0.

LONG STSensorAddHotSpot(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight)

Parameter Values I/O Description
LONG nLeft

>= 0 I Left boundary; 0 is on the far left of the display

LONG nTop

>= 0 I Upper boundary; 0 is at the top of the display

LONG nWidth

> 3 I Width; STDisplayGetWidth() returns the width
of the LCD used

0 I Right boundary is automatically set to the maximum
value (right margin of the LCD)

LONG nHeight

> 3 I Height; STDisplayGetHeight() returns the
height of the LCD used

0 I Lower boundary is automatically set to the
maximum value (lower margin of the LCD)

Return value Values Description
LONG >= 0 ID of the hotspot that was generated

< 0 Error

6.12.1 Usage:

LONG nRc = STSensorAddHotSpot(0, 0, 0, 40);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.13 STSensorSetHotspotMode method

This method defines the behavior of a monitored area (hotspot).

Available from Version 8.2.0.

LONG STSensorSetHotSpotMode(HOTSPOTMODE nMode, LONG nHotSpotId)

Parameter Values I/O Description
HOTSPOTMODE nMode 0 I Deactivates the monitored area

1 I Activates the monitored area (default after calling
STSensorAddHotSpot() or
STSensorAddScrollHotSpot())

2 I Activates the monitored area but disables the
automatic inverting when the area is clicked

LONG nHotSpotId >= 0 I ID of the hotspot that is to be changed
Return value Values Description
LONG >= 0 ID of the hotspot that was generated

< 0 Error

The HOTSPOTMODE enumeration is defined as follows:

kInactive = 0,
kActive = 1,
kInvertOff = 2

Guide_SIGAPILI_20210105_ENG 23

6.13.1 Usage:

LONG nRc = STSensorSetHotspotMode(kActive, 0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.14 STSensorClearHotSpots method

This method removes all monitored areas (hotspots).

Available from Version 8.2.0.

LONG STSensorClearHotSpots()

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.14.1 Usage:

LONG nRc = STSensorClearHotSpots();
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.15 STSensorStartTimer method

This method starts a Timer, which starts a defined function, if there was no interaction on the sensor of
the pad for the given time periods. This Functionality is intended primarily to capture a signature
without user interaction, but it can also be used to get a confirmation for a displayed text, if the
belonging hotspot is not pressed for a given time period.

Available from Version 8.2.1.15 onwards

LONG STSensorStartTimer(LONG nWaitBeforeAction, LONG nWaitAfterAction,
LONG nOptions)

Parameter Values I/O Description
LONG
nWaitBeforeAction

0 I No timer waiting for the first interaction is started
> 0 I Maximum time to wait for the first interaction (in

milliseconds) before the defined function is
triggered (for example, before the start of a
signature); the timer is restarted with this value after
the calling of STSignatureRetry().

LONG
nWaitAfterAction

0 I After the first interaction no timer waiting for the
next interaction is started

> 0 I Maximum time to wait after the last interaction was
noticed in millisecond. If the given time period
elapsed without a new interaction, the wanted
function will be called (usually this takes places after
the signing is finished).

Guide_SIGAPILI_20210105_ENG 24

LONG nOptions 0 I If the timer has expired, the
SensorTimeoutOccured() event is called.

1 I If the time period of nWaitBeforeAction has
elapsed, STSignatureCancel() is called; if the
time period of nWaitAfterAction has elapsed,
STSignatureConfirm() is called

2 I If the timer has expired, STSignatureCancel()
is called

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.15.1 Usage:

LONG nRc = STSensorStartTimer(10000, 1000, 0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.16 STSensorStopTimer method

This method stops a timer started with STSensorStartTimer() without triggering the function
defined there. The method is called automatically if STSignatureConfirm() or
STSignatureCancel() is called.

Available from Version 8.2.1.15 onwards.

LONG STSensorStopTimer()

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 0 Method was executed successfully (will be returned also, if

no timer was set before)
< 0 Error

6.16.1 Usage:

LONG nRc = STSensorStopTimer();
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.17 STSignatureStart method

This method starts the signature capture process provided a connection has been opened via
DeviceOpen(). The entire sensor is used as a writing surface provided no signature window has been
defined. Signature data is only received, if a signature is actually entered on the pad. The method sets
the colour of the LED to green unless the STDeviceGetLedDefaultFlag() method returns FALSE.
This method automatically restores the previous content of the LCD unless this has been explicitly
erased by calling STDisplayErase().

Available from Version 8.2.0.

Guide_SIGAPILI_20210105_ENG 25

LONG STSignatureStart()

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.17.1 Usage:

LONG nRc = STSignatureStart();
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.18 STSignatureStop method

This method terminates the signature capture process that is currently running, and caches the captured
signature data. Unlike the STSignatureConfirm() method, it does not change the display content.
STSignatureStop() sets the colour of the LED to yellow unless the
STDeviceGetLedDefaultFlag() method returns FALSE.

Available from Version 8.2.0.

LONG STSignatureStop()

Parameter Values I/O Description
- - - -
Return value Values Description
LONG >= 0 Number of points captured

< 0 Error

6.18.1 Usage:

LONG nRc = STSignatureStop();
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
 wprintf(L"%d points captured.", nRc);

6.19 STSignatureConfirm method

This methods terminates the signature capture process that is currently running (if any), caches the
captured signature data and, unlike STSignatureStop(), erases the entire LCD.
STSignatureConfirm() sets the colour of the LED to yellow unless the
STDeviceGetLedDefaultFlag() method returns FALSE.

Available from Version 8.2.0.

LONG STSignatureConfirm()

Parameter Values I/O Description
- - - -

Guide_SIGAPILI_20210105_ENG 26

Return value Values Description
LONG

>= 0 Number of points captured
< 0 Error

6.19.1 Usage:

LONG nRc = STSignatureConfirm();
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
 wprintf(L"%d points captured.", nRc);

6.20 STSignatureRetry method

This method discards the signature data without ending the signature capture process, and deletes the
rendered signature in the LCD. This method starts a new capture process if the signature capture process
was terminated beforehand with STSignatureStop().

Available from Version 8.2.0.

LONG STSignatureRetry()

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.20.1 Usage:

LONG nRc = STSignatureRetry();
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.21 STSignatureCancel method

This method ends the capture process, discards the signature data and deletes the entire LCD or just the
signature. The colour of the LED is set to yellow unless the STDeviceGetLedDefaultFlag()
method returns FALSE. This method is called automatically when STDeviceClose() is called.

Available from Version 8.2.0.

LONG STSignatureCancel(ERASEOPTION nErase=kComplete)

Parameter Values I/O Description
ERASEOPTION
nErase

0 I The entire LCD will be deleted (Default)
1 I Only the signature will be deleted (Optional)

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

The ERASEOPTION enumeration is defined as follows:

Guide_SIGAPILI_20210105_ENG 27

kComplete = 0,
kSignature = 1

6.21.1 Usage:

LONG nRc = STSignatureCancel();
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.22 STSignatureGetState method

This method returns the current state of the signature capture process.

Available from Version 8.2.0.

BOOL STSignatureGetState()

Parameter Values I/O Description
- - - -
Return value Values Description
BOOL TRUE Signature capture process is running

FALSE Signature capture process is not running

6.22.1 Usage:

if (!STSignatureGetState())
 STSignatureStart();
else
 STSignatureConfirm();

6.23 STSignatureGetSignData method

This method returns the digitalised signature in SignData format.

Available from Version 8.2.0.

LONG STSignatureGetSignData(BYTE* pbtSignData, LONG* pnSize)

Parameter Values I/O Description
BYTE* pbtSignData NULL I The method returns the required size of the array in

the pnSize parameter.
other I/O Array (in the required size) in which the SignData is

written; pnSize must correspond to the value
returned for the previous call.

LONG* pnSize > 0 I/O Size of the array (in bytes) in which the SignData is
to be written

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

Guide_SIGAPILI_20210105_ENG 28

6.23.1 Usage:

LONG nSize = 0;
LONG nRc = STSignatureGetSignData(NULL, &nSize);
BYTE* pbtSignData = NULL;
if (nRc == 0)
{
 pbtSignData = new BYTE[nSize];
 nRc = STSignatureGetSignData(pbtSignData, &nSize);
}
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.24 STSignatureSaveAsFileEx method

This method can be used to save a captured signature as an image file on a hard disk. The colour depth
depends on the file type, the device used and the settings. If no further settings are made (see
nOptions parameter), the image is created with the aspect ratio of the rectangle that surrounds the
signature.

Available from Version 8.2.0. The status described is available from Version 8.2.1.16.

LONG STSignatureSaveAsFileEx(LPCWSTR szPath, LONG nResolution, LONG
nWidth, LONG nHeight, FILETYPE nFileType, LONG nPenWidth, COLORREF
clrPen, LONG nOptions)

Parameter Values I/O Description
LPCWSTR szPath

!=
NULL

I Storage location for the image file as a full path that
includes the file name

LONG nResolution

>=75
<=600

I Resolution of the image file in pixels per inch (ppi);
for the signature to be displayed in its original size,
this value must be identical to the resolution of the
document, in which the signature is to be integrated

LONG nWidth

0 I The image will be created in original size; the
nHeight parameter is ignored.

> 0 I Maximum width of the image in pixels
LONG nHeight

0 I The image will be created in original size; the
nWidth parameter is ignored

> 0 I Maximum height of the image in pixels
FILETYPE
nFileType

0 I Use TIFF with CCITT4 compression (b/w image) or
LZW compression (colour image) as the file format
(recommended)

1 I Use PNG file format
2 I Use BMP file format. The type is not supported on

Linux
3 I Use JPEG with a quality setting of 75 as the file

format
4 I Use GIF file format (the resolution will always be 96

ppi). The type is not supported on Linux

Guide_SIGAPILI_20210105_ENG 29

LONG nPenWidth

< 0 I Fixed stroke width in pixels (absolute value); the
pressure values are visualised by drawing in variable
brightness

0 I A variable pen width is used that is dependent on
the resolution and the pressure values

> 0 I Fixed pen width in pixels
COLORREF clrPen >= 0 I Signature colour
LONG nOptions Bitmask containing one or more hexadecimal values from the

following list:
0x000
1

I A visual timestamp is added to the image beneath
the signature

0x000
2

I The signature is rendered in the image displayed
during capture; the image always has the aspect
ratio of the display that is used, nWidth or
nHeight may be ignored

0x000
4

I The defined hotspot areas are whitened in the
image (only if 0x0002 is set).

0x000
8

I White areas at the sides of the signature are not
removed; if nWidth and nHeight are greater than
0, the signature is scaled to the defined height or
width depending on aspect ratio, and the image to
be created has the exact size defined by nWidth
and nHeight (only if 0x0002 is not set).

0x001
0

I The signature will be aligned to the left (only if
0x0008 is set).

0x002
0

I The signature will be aligned to the right (only if
0x0008 is set)

0x004
0

I The signature will be aligned to the top (only if
0x0008 is set)

0x008
0

I The signature will be aligned to the bottom (only if
0x0008 is set)

0x010
0

I The timestamp size is relative to the height of the
created image, not to the height of the display; this
setting is useful if the signature is scaled to a given
image size to make sure that the timestamp size is
independent from the size of the actual signature
(only if 0x0001 is set)

0x020
0

I The signature is never smoothed independent from
all other settings; this will create small files

0x040
0

I The signature is always smoothed independent from
all other settings

0x080
0

I The image includes the overlay rectangle if
displayed (only if 0x0002 is set)

0x100
0

I White areas are stored as transparent (only if
0x0002 is not set and PNG is selected as the file
format)

0x200
0

I The current display content and not the content
displayed during capture is used as the background
image (only if 0x0002 is set)

0x400
0

I The pen width will vary by the value indicated
depending on the pressure values

Guide_SIGAPILI_20210105_ENG 30

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

The FILETYPE enumeration is defined as follows:

kTiff = 0,
kPng = 1,
kBmp = 2,
kJpeg = 3,
kGif = 4

The following values defined in the header file can be used for the nOptions parameter:

#define STPAD_SIMG_TIMESTAMP 0x0001
#define STPAD_SIMG_BACKIMAGE 0x0002
#define STPAD_SIMG_HOTSPOTS 0x0004
#define STPAD_SIMG_NOCROPPING 0x0008
#define STPAD_SIMG_ALIGNLEFT 0x0010
#define STPAD_SIMG_ALIGNRIGHT 0x0020
#define STPAD_SIMG_ALIGNTOP 0x0040
#define STPAD_SIMG_ALIGNBOTTOM 0x0080
#define STPAD_SIMG_TIMESTAMPIMGREL 0x0100
#define STPAD_SIMG_DONTSMOOTH 0x0200
#define STPAD_SIMG_SMOOTH 0x0400
#define STPAD_SIMG_OVERLAYIMAGE 0x0800
#define STPAD_SIMG_TRANSPARENT 0x1000
#define STPAD_SIMG_CURRENTIMAGES 0x2000
#define STPAD_SIMG_VARIABLEPENWIDTH 0x4000

6.24.1 Usage:

LONG nRc = STSignatureSaveAsFileEx(L"./Signature.tif", 300, 0, 0,
kTiff, 0, RGB(0, 0, 255), 0);

if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.25 STSignatureGetBounds method

This method delivers the coordinates of the rectangle in which the captured signature is given.

Available from Version 8.2.0.

LONG STSignatureGetBounds(LONG* pnLeft, LONG* pnTop, LONG* pnRight,
LONG* pnBottom, LONG nOptions)

Parameter Values I/O Description
LONG* pnLeft >= 0 O Left border of the signature rectangle
LONG* pnTop >= 0 O Upper border of the signature rectangle
LONG* pnRight >= 0 O Right border of the signature rectangle
LONG* pnBottom >= 0 O Bottom border of the signature rectangle

Guide_SIGAPILI_20210105_ENG 31

LONG nOptions 0 I The coordinates will be delivered relative to the size
of the used LCD

1 I The coordinates will be returned relative to the
defined size of the signature rectangle (see
STSensorSetSignRect())

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

The following values defined in the header file can be used for the nOptions parameter:

#define STPAD_BOUNDS_DISPLAY 0
#define STPAD_BOUNDS_SIGNRECT 1

6.25.1 Usage:

LONG nLeft, nTop, nRight, nBottom;
LONG nRc = STSignatureGetBounds(&nLeft, &nTop, &nRight, &nBottom,

STPAD_BOUNDS_DISPLAY);
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
{
 wprintf(L"The Bounds of the Signature are: %d (left), "%d

(top), %d (right) & %d (bottom).", nLeft, nTop, nRight,
nBottom);

}

6.26 STSignatureScaleToDisplay method

This method converts the sensor coordinates delivered by theSignatureDataReceived() event
into display coordinates.

Available from Version 8.2.0.

LONG STSignatureScaleToDisplay(LONG nSensorValue)

Parameter Values I/O Description
LONG nSensorValue >= 0 I x or y value of a sensor coordinate
Return value Values Description
LONG 0 x or y value of a display coordinate

< 0 Error

6.26.1 Usage:

LONG nRc = STSignatureScaleToDisplay(1000);
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
 wprintf(L"Display Value: %d", nRc);

Guide_SIGAPILI_20210105_ENG 32

6.27 STDisplayGetWidth method

This method returns the width of the LCD. It can only be called after a device has been opened.

Available from Version 8.2.0.

LONG STDisplayGetWidth()

Parameter Values I/O Description
- - - -
Return value Values Description
LONG >= 0 Width of the display in pixels

< 0 Error

6.27.1 Usage:

wprintf(L"Display width is %d", STDisplayGetWidth());

6.28 STDisplayGetHeight method

This method returns the height of the LCD. It can only be called after a device has been opened.

Available from Version 8.2.0.

LONG STDisplayGetHeight()

Parameter Values I/O Description
- - - -
Return value Values Description
LONG >= 0 Height of the display in pixels

< 0 Error

6.28.1 Usage:

wprintf(L"Display height is %d", STDisplayGetHeight());

6.29 STDisplayGetTargetWidth method

This method returns the width of the memory defined with the STDisplaySetTarget() method. It
can only be called after a device has been opened.

Available from Version 8.2.0.

LONG STDisplayGetTargetWidth()

Parameter Values I/O Description
- - - -
Return value Values Description
LONG >= 0 Width of the memory in pixels

< 0 Error

Guide_SIGAPILI_20210105_ENG 33

6.29.1 Usage:

wprintf(L"Target width is %d", STDisplayGetTargetWidth());

6.30 STDisplayGetTargetHeight method

This method returns the height of the memory defined with the STDisplaySetTarget() method. It
can only be called after a device has been opened.

Available from Version 8.2.0.

LONG STDisplayGetTargetHeight()

Parameter Values I/O Description
- - - -
Return value Values Description
LONG >= 0 Height of the memory in pixels

< 0 Error

6.30.1 Usage:

wprintf(L"Target height is %d", STDisplayGetTargetHeight());

6.31 STDisplayErase method

This method erases both the foreground and the background buffer and removes the overlay rectangle
if set. Thus the entire contents of the LCD is erased. To erase only parts of the memory defined with
STDisplaySetTarget(), please use STDisplayEraseRect().

Available from Version 8.2.1.15 onwards.

LONG STDisplayErase()

Parameter Values I/O Description
- - - -
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.31.1 Usage:

LONG nRc = STDisplayErase();
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.32 STDisplayEraseRect method

This method erases a rectangle in the memory defined with STSisplaySetTarget().

Available from Version 8.2.0.

Guide_SIGAPILI_20210105_ENG 34

LONG STDisplayEraseRect(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight)

Parameter Values I/O Description
LONG nLeft >= 0 I Left boundary; 0 is on the far left of the display
LONG nTop >= 0 I Upper boundary; 0 is at the top of the display
LONG nWidth > 0 I Width; STDisplayGetWidth() returns the width

of the LCD used
0 I Right boundary is automatically set to the maximum

value (right edge of the LCD)
LONG nHeight > 0 I Height; STDisplayGetHeight() returns the

height of the LCD used
0 I Lower boundary is automatically set to the

maximum value (lower edge of the LCD)
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.32.1 Usage:

LONG nRc = STDisplayEraseRect(10, 50, 30, 20);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.33 STDisplayConfigPen method

This method sets the pen width and colour used to display a signature on the LCD. The pen width is
always stored permanently in the device; the pen colour is stored permanently only on Omega devices
with firmware 1.4 or later.

Available from Version 8.2.0.

LONG STDisplayConfigPen(LONG nWidth, COLORREF clrPen)

Parameter Values I/O Description
LONG nWidth 1 – 3 I Width in pixels
COLORREF clrPen >= 0 I Colour; this parameter is ignored for the Sigma

model
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.33.1 Usage:

LONG nRc = STDisplayConfigPen(2, RGB(0, 0, 255));
if (nRc < 0)
 wprintf(L"Error %d", nRc);

Guide_SIGAPILI_20210105_ENG 35

6.34 STDisplaySetFont method

This method permanently sets the font that is used to output text to the LCD. Text that has already been
output is not modified. Ubuntu 20 pt (Sigma model) or 40 pt (Omega, Gamma and Alpha models) is set
when STDeviceOpen() is called.

Available from Version 8.2.1.15 onwards.

LONG STDisplaySetFont(LPCWSTR szName, LONG nSize, LONG nOptions)

Parameter Values I/O Description
LPCWSTR szName !=

NULL
I Full name of the font, which must be installed on the

PC.
LONG nSize 12 -

200
I Font size

LONG nOptions Bitmask containing one or more hexadecimal values from the
following list:
0x01 I Bold
0x02 I Underlined; the option is not supported on Linux
0x04 I Italicised

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

The following values defined in the header file can be used for the nOptions parameter:

#define STPAD_FONT_NORMAL 0x00
#define STPAD_FONT_BOLD 0x01
#define STPAD_FONT_UNDERLINE 0x02
#define STPAD_FONT_ITALIC 0x04

6.34.1 Usage:

LONG nRc = STDisplaySetFont(L"Ubuntu Mono", 20,
STPAD_FONT_NORMAL);

if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.35 STDisplaySetFontColor method

This method permanently sets the colour in which the text is displayed on the LCD. Text that has already
been output is not modified. The given values will be ignored, if a pad without a color LCD is used. The
colour black is set when the component is initialised.

Available from Version 8.2.1.15 onwards.

LONG STDisplaySetFontColor(COLORREF clrFont)

Parameter Values I/O Description
COLORREF clrFont >= 0 I Text colour
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

Guide_SIGAPILI_20210105_ENG 36

6.35.1 Usage:

LONG nRc = STDisplaySetFontColor(RGB(238, 121, 0));
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.36 STDisplaySetTarget method

This method defines the device memory that is used by the following methods and properties:
STDisplayEraseRect(), STDisplaySetText(), STDisplaySetTextInRect(),
STDisplaySetImage(), STDisplaySetImageFromFile(),
STDisplaySetImageFromStore(), STDisplaySetScrollPos(),
STDisplayGetScrollPos(), STDisplayGetTargetWidth() and
STDisplayGetTargetHeight(). The set memory remains valid until the next call of this method or
of STDeviceClose(). Contents stored in a non-visible memory can be displayed with the
STDisplaySetImageFromStore() method. For more details, see Chapter 6.

After the calling of STDeviceOpen(), the methods specified above are all executed directly on the
LCD (foreground buffer) as long as STDisplaySetTarget() is not called.

Available from Version 8.2.0.

LONG STDisplaySetTarget(LONG nTarget)

Parameter Values I/O Description
LONG nTarget -2 I A permanent memory that can hold an image of the

same width and double the height of the display is
reserved inside the device; the memory can be used
for writing from now on; if there is no permanent
memory available, the return value will be 1 (see
below); the value -2 is handled as -1 for the Gamma
and Alpha models (see there for details)

-1 I A permanent memory that can hold an image in the
size of the display (Gamma and Omega models) or
up to a size of 2048 x 2048 pixels (Alpha model) is
reserved inside the device; the memory can be used
for writing from now on; if there is no permanent
memory available, the return value will be 1 (see
below)

0 I All content is displayed directly on the LCD and
stored in the foreground buffer; the content is lost if
the device is switched off or if
STDisplayErase() or STDeviceClose() is
called

1 I All content is written to the non-visible background
buffer; the background buffer is used internally
during the signature process, so content is no longer
available after STSignatureStart() has been
called; the content is also lost if the device is
switched off or if STDisplayErase()or
STDeviceClose() is called

Guide_SIGAPILI_20210105_ENG 37

2 I All content is written to the overlay buffer; it is
visible immediately if an overlay rectangle has
already been defined; the content is lost if the
device is switched off or if STDisplayErase()or
STDeviceClose() is called; this value can only
be used for the Omega, Gamma and Alpha models

other
I Enables direct access to a permanent storage; The

storage must be reserved before it can be used (see
above for value -1 and -2)

Return value Values Description
LONG >= 0 ID of the store which is now selected; all the above referred

methods will now be applied to this store; this ID can be
used when calling this method again to specifically address
this store

< 0 Error

The following values defined in the header file can be used for the nTarget parameter:

#define STPAD_TARGET_LARGESTORE -2
#define STPAD_TARGET_STANDARDSTORE -1
#define STPAD_TARGET_FOREGROUND 0
#define STPAD_TARGET_BACKGROUND 1
#define STPAD_TARGET_OVERLAY 2

6.36.1 Usage:

LONG nStoreId = STDisplaySetTarget(STPAD_TARGET_STANDARDSTORE);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.37 STDisplaySetText method

This method can be used to write any text to the memory defined with the STDisplaySetTarget()
method. The rectangle enclosing the text overlays existing information in the memory. The text can also
appear outside of the display and it is not wrapped. Ubuntu 20 pt (Sigma model) or 40 pt (Omega,
Gamma and Alpha models) is used, unless another font has been set using the STDisplaySetFont()
method. The colour of the text will be black unless another colour has been set using the
STDisplaySetFontColor() method.

Available from Version 8.2.0.

LONG STDisplaySetText(LONG nXPos, LONG nYPos, ALIGN nAlignment, LPCWSTR
szText)

Parameter Values I/O Description
LONG nXPos all I X coordinate of the starting point; 0 is on the far left

of the display; STDisplayGetWidth() returns
the point on the far right of the display

LONG nYPos all I Y coordinate of the starting point; 0 is at the top of
the display; STDisplayGetHeight() returns the
point at the very bottom of the display

ALIGN nAlignment 0 I Text is aligned to the right of the starting point
1 I Text is centred horizontally at the starting point

Guide_SIGAPILI_20210105_ENG 38

2 I Text is aligned to the left of the starting point
LPCWSTR szText !=

NULL
I Text to be output

Return value Values Description
LONG

int

Integer

>= 0 Width of the rectangle enclosing the text
< 0 Error

The ALIGN enumeration is defined as follows:

kLeft = 0,
kCenter = 1,
kRight = 2,
kLeftCenteredVertically = 3,
kCenterCenteredVertically = 4,
kRightCenteredVertically = 5,
kLeftNoWrap = 6,
kCenterNoWrap = 7,
kRightNoWrap = 8

6.37.1 Usage:

LONG nRc = STDisplaySetText(50, 20, kLeft, L"Text");
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.38 STDisplaySetTextInRect method

This method can be used to write any text to the memory defined with the STDisplaySetTarget()
method. The specified rectangle overlays existing information in the memory. The text is placed in the
rectangle. No check is made regarding whether the rectangle is within the display. Ubuntu 20 pt (Sigma
model) or 40 pt (Omega, Gamma and Alpha models) is used, unless another font has been set using the
STDisplaySetFont() method. If the text is too long, the font size is automatically reduced to a
minimum of 12pt. The colour of the text will be black unless another colour has been set using the
STDisplaySetFontColor() method.

Available from Version 8.2.0.

LONG STDisplaySetTextInRect(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight, ALIGN nAlignment, LPCWSTR szText)

Parameter Values I/O Description
LONG nXPos all I X coordinate of the starting point; 0 is on the far left

of the display
LONG nYPos all I Y coordinate of the starting point; 0 is on the top of

the display
LONG nWidth > 0 I Width; STDisplayGetWidth() returns the width

of the LCD used
0 I Right boundary is automatically set to the maximum

value (right margin of the LCD)

Guide_SIGAPILI_20210105_ENG 39

LONG nHeight > 0 I Height; STDisplayGetHeight() returns the
height of the LCD used

0 I Lower boundary is automatically set to the
maximum value (lower margin of the LCD)

ALIGN nAlignment 0 I Text is left-aligned and wrapped automatically
1 I Text is centred and wrapped automatically
2 I Text is right-aligned and wrapped automatically
3 I Text is left-aligned and centred vertically in the

rectangle with no wrapping (breaks are ignored)
4 I Text is centred vertically and horizontally in the

rectangle with no wrapping (breaks are ignored);
this setting is ideal for button text

5 I Text is right-aligned and centred vertically in the
rectangle with no wrapping (breaks are ignored)

6 I Text is left-aligned and not wrapped automatically
(breaks are retained)

7 I Text is centred and not wrapped automatically
(breaks are retained)

8 I Text is right-aligned and not wrapped automatically
(breaks are retained)

LPCWSTR szText !=
NULL

I Text to be output

Return value Values Description
LONG >=12 The font size that is actually used

< 0 Error

The ALIGN enumeration is defined as follows:

kLeft = 0,
kCenter = 1,
kRight = 2,
kLeftCenteredVertically = 3,
kCenterCenteredVertically = 4,
kRightCenteredVertically = 5,
kLeftNoWrap = 6,
kCenterNoWrap = 7,
kRightNoWrap = 8

6.38.1 Usage:

LONG nRc = STDisplaySetTextInRect(0, 0, 20, 40, kLeft, L"Text");
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.39 STDisplaySetImageFromFile method

This method allows an image whose path is transferred to be written to the memory defined using the
STDisplaySetTarget() method. Although the colour depth is automatically adjusted to the
connected LCD, it is still advisable to correctly generate the image beforehand (for example, a 1-bit
monochrome image is required for the Sigma model). The transfer time for the Omega, Gamma and
Alpha models depends on the image material; the best pictures have few colours, so they can be

Guide_SIGAPILI_20210105_ENG 40

compressed well. The image overlays the existing information in the memory and any signature that is
present is completely erased. The image may also be positioned outside of the display.

Available from Version 8.2.0. The status described is available from Version 8.2.1.16.

LONG STDisplaySetImageFromFile(LONG nXPos, LONG nYPos, LPCWSTR szPath)

Parameter Values I/O Description
LONG nXPos all I X coordinate of the point from which the bitmap is

output to the right; 0 is on the far left of the display;
STDisplayGetWidth() returns the point on the
far right of the display

LONG nYPos all I Y coordinate of the point from which the bitmap is
output downwards; 0 is at the top of the display;
STDisplayGetHeight() returns the point at the
very bottom of the display

LPCWSTR szPath !=
NULL

I Full file path of the image; TIFF, PNG, BMP and JPEG
can be used as image formats; JPEG is not supported
on Linux with the model Sigma

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.39.1 Usage:

LONG nRc = STDisplaySetImageFromFile(0, 0, L"./Image.png");
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.40 STDisplaySetImageFromStore method

This method allows an image that has been stored in a device memory to be written to the memory
defined by the STDisplaySetTarget() method. The content to copy will overlay the content which
is currently stored in the target storage. For more details, see Chapter 6.

If the memory defined by nStoreId was not reserved beforehand by calling
STDisplaySetTarget(), the content is copied as desired; however, it is not available within the
component for storing with the DisplaySaveImage…() or SignatureSave…() method. To
differentiate this case from a call with a reserved nStoreId, nStoreId is returned instead of 0.

The scroll position of the source memory will be assigned to the destination memory, if both have the
same size, else it will be set to 0 / 0.

Available from Version 8.2.0.

LONG STDisplaySetImageFromStore(LONG nStoreId)

Parameter Values I/O Description
LONG nStoreId >= 0 I ID of the memory from which the image is to be

read; the ID is the value returned by the
STDisplaySetTarget() method

Guide_SIGAPILI_20210105_ENG 41

Return value Values Description
LONG other The memory defined by nStoreId has not been reserved

beforehand; the content was successfully copied, but is not
available within the component; the returned value is
identical to the value of nStoreId

0 Method was executed successfully
< 0 Error

The following values defined in the header file or the ID of a reserved, non-volatile memory can be used
for the nStoreId parameter:

#define STPAD_TARGET_FOREGROUND 0
#define STPAD_TARGET_BACKGROUND 1

6.40.1 Usage:

LONG nRc = STDisplaySetImageFromStore(STPAD_TARGET_BACKGROUND);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.41 STDisplaySetOverlayRect method

This method defines a rectangular subarea of the display whose contents will be covered by the
contents of the overlay buffer. The foreground buffer is covered within this rectangle until it is removed
again or until STDisplayErase(), STSignatureConfirm() or STSignatureCancel() is
called. This functionality is ideal for a toolbar that displays hotspots, for example, to scroll.

If the storage defined with STDisplaySetTarget() is not the foreground buffer, the rectangle is not
overlaid until STDisplaySetImageFromStore() (with the foreground buffer as the destination) is
called to synchronise the display.

The parameters must be multiples of 8 and may be rounded.

This method cannot be called when a both a standard hotpot lying outside of the given rectangle and a
scroll hotspot has been defined previously.

This method only works with Omega, Gamma and Alpha models.

Available from Version 8.2.0.

LONG STDisplaySetOverlayRect(LONG nLeft, LONG nTop, LONG nWidth, LONG
nHeight)

Parameter Values I/O Description
LONG nLeft >= 0 I Left boundary; 0 is on the far left of the display
LONG nTop >= 0 I Upper boundary; 0 is at the top of the display
LONG nWidth >= 8 I Width; STDisplayGetWidth() returns the width

of the LCD used
0 I The overlay rectangle is removed; the complete

contents of the foreground buffer will be visible
again

Guide_SIGAPILI_20210105_ENG 42

LONG nHeight >= 8 I Height; STDisplayGetHeight() returns the
height of the LCD used

0 I The overlay rectangle is removed; the complete
contents of the foreground buffer will be visible
again

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.41.1 Usage:

LONG nRc = STDisplaySetOverlayRect(0, 400, 640, 80);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.42 STDisplaySetScrollPos method

This method defines the X/Y position where the contents of the storage defined with the
STDisplaySetTarget() method will be displayed. This method only works for image memories
with a size larger than the display size. Please refer to the descriptions of the
STDisplayGetTargetWidth() and STDisplayGetTargetHeight() methods.

Available from Version 8.2.0.

LONG STDisplaySetScrollPos(LONG nXPos, LONG nYPos)

Parameter Values I/O Description
LONG nXPos >= 0 I Horizontal offset of the memory contents to the left,

in pixels; the maximum possible value is calculated
from STDisplayGetTargetWidth() -
STDisplayGetWidth()

LONG nYPos >= 0 I Vertical offset of the memory contents to the top, in
pixels; the maximum possible value is calculated
from STDisplayGetTargetHeight() -
STDisplayGetHeight()

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.42.1 Usage:

LONG nRc = STDisplaySetScrollPos(0, 100);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.43 STDisplayGetScrollPos method

This method returns the X/Y position where the contents of the storage defined with the
STDisplaySetTarget() method is displayed.

Available from Version 8.2.0.

Guide_SIGAPILI_20210105_ENG 43

LONG STDisplayGetScrollPos(LONG* pnXPos, LONG* pnYPos)

Parameter Values I/O Description
LONG* pnXPos !=

NULL
O Horizontal offset of the memory contents to the left,

in pixels
LONG* pnYPos !=

NULL
O Vertical offset of the memory contents to the top, in

pixels
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.43.1 Usage:

LONG nXPos, nYPos;
LONG nRc = STDisplayGetScrollPos(&nXPos, &nYPos);
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
 wprintf(L"Scroll pos: %d / %d", nXPos, nYPos);

6.44 STDisplaySaveImageAsFile method

This method allows the actual display content to be stored into an image file on the hard disk. Any
existing signature will be ignored for saving. The image has the size and resolution of the screen on the
device used. The colour depth depends on the file type and the device used.

Available from Version 8.2.1.15 onwards. The status described is available from Version 8.2.1.16.

LONG STDisplaySaveImageAsFile(LPCWSTR szPath, FILETYPE nFileType, LONG
nOptions)

Parameter Values I/O Description
LPCWSTR szPath !=

NULL
I Storage location for the image file as a full path that

includes the file name
FILETYPE
nFileType

0 I Use TIFF with CCITT4 compression (b/w image) or
LZW compression (colour image) as the file format

1 I Use PNG file format
2 I Use BMP file format. The type is not supported on

Linux
3 I Use JPEG with a quality setting of 75 as the file

format
4 I Use GIF as the file format. The type is not supported

on Linux
LONG nOptions Bitmask containing one or more hexadecimal values from the

following list:
0x01 I The whole content of the display will be stored; The

hotspot areas (buttons) stay white in this mode.
0x02 I Instead of the current display content the content of

the whole foreground buffer without the overlay
rectangle is saved

Guide_SIGAPILI_20210105_ENG 44

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

The FILETYPE enumeration is defined as follows:

kTiff = 0,
kPng = 1,
kBmp = 2,
kJpeg = 3,
kGif = 4

The following values defined in the header file can be used for the nOptions parameter:

#define STPAD_DIMG_HOTSPOTS 0x01
#define STPAD_DIMG_BUFFER 0x02

6.44.1 Usage:

LONG nRc = STDisplaySaveImageAsFile("./Image.tif", kTiff, 0);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.45 STDisplaySetStandbyImageFromFile method

This method allows an image, whose path is passed, to be stored permanently in the selected device.
The image is automatically displayed when a connection to the device has not yet been opened (while a
connection is being established, for example). Although the colour depth is automatically adjusted to
the connected LCD, it is still advisable to correctly generate the image beforehand (for example, a 1-bit
monochrome image is required for the Sigma model). If the image is too small, it is centred. If the image
is too large, it is cropped on the right and at the bottom.

The image is only transmitted when the memory management determines that the image is not already
stored in the device. A slide show configuration is removed by calling this method.

Available from Version 8.2.1.15 onwards.

LONG STDisplaySetStandbyImageFromFile(LPCWSTR szPath)

Parameter Values I/O Description
LPCWSTR szPath !=

NULL
I Full file path of the image; PNG and TIFF can be used

as image formats
Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.45.1 Usage:

LONG nRc = STDisplaySetStandbyImageFromFile(L"./Image.png");
if (nRc < 0)
 wprintf(L"Error %d", nRc);

Guide_SIGAPILI_20210105_ENG 45

6.46 STDisplayConfigSlideShow method

With this method, a slide show of permanently stored images can be configured to be played
automatically on the target device, if the device is not in use. A possibly saved standby image is
removed.

This method only works with Omega, Gamma and Alpha models.

Available from Version 8.2.1.15 onwards.

LONG STDisplayConfigSlideShow(LPCWSTR szSlideList, LONG nDuration)

Parameter Values I/O Description
LPCWSTR
szSlideList

NULL,
""

I The slide show will be disabled

other I A list of up to 16 (Gamma) or 32 (Omega and Alpha)
IDs of image stores separated by semicolon; these
IDs must be reserved previously by the
STDisplaySetTarget() method and must be
filled with text or images; an ID of an image store
can be included multiple times; the slide show will
be displayed in the given order

LONG nDuration 1000
-

30000
0

I Time in milliseconds for each image to be displayed.

Return value Values Description
LONG >= 0 Number of images in the slide show

< 0 Error

6.46.1 Usage:

LONG nRc = STDisplayConfigSlideShow("5;6;8;5;7", 2000);
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.47 STDisplayGetStandbyId method

This method returns the number of images configured for standby operation, as well as a hexadecimal
character string that identifies the standby image currently set or the slide show currently configured.
Thus it can be checked, for example, whether the current configuration matches the desired one.

Available from Version 8.2.1.15 onwards.

LONG STDisplayGetStandbyId(LPCWSTR szId, LONG* pnStringLength)

Parameter Values I/O Description
LPCWSTR szId NULL I The method returns the length of the character

string in the pnStringLength parameter
!=
NULL

I/O Array in which the character string that identifies the
current configuration is written; if the array is too
small, the end characters are cut off

LONG*
pnStringLength

>= 0 I/O Length of the character string or size of the szId
array in bytes

Guide_SIGAPILI_20210105_ENG 46

Return value Values Description
LONG >= 0 Number of reserved permanent stores used for the standby

image or the slide show
< 0 Error

6.47.1 Usage:

LONG nLen = 0;
LONG nRc = STDisplayGetStandbyId(NULL, &nLen);
if (nRc == 0)
 wprintf(L"No standby mode configured!");
else if (nRc > 0)
{
 WCHAR* szId = new WCHAR[nLen / sizeof(WCHAR)];
 nRc = STDisplayGetStandbyId(szId, &nLen);
 if (nRc > 0)
 wprintf(L"%d stores configured, ID is: %s", nRc, szId);
 delete [] szId;
}
if (nRc < 0)
 wprintf(L"Error %d", nRc);

6.48 STControlGetVersion method

This method returns the version number of the component.

Available from Version 8.2.0.

LONG STControlGetVersion(WCHAR szVersion[16])

Parameter Values I/O Description
WCHAR
szVersion[16]

!=
NULL

O Buffer where the version number is written

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.48.1 Usage:

WCHAR szVersion[16];
LONG nRc = STControlGetVersion(szVersion);
if (nRc < 0)
 wprintf(L"Error %d", nRc);
else
 wprintf(L"Version: %s", szVersion);

6.49 STControlSetAppName method

This method can be used to assign the name of the application that uses the component. Users can use
this name to exclusively assign one or more image memories. Please refer to chapter ‘Exclusive use of
non-volatile memory’ for details.

Available from Version 8.2.1.15 onwards.

Guide_SIGAPILI_20210105_ENG 47

VOID STControlSetAppName(LPCWSTR szName)

Parameter Values I/O Description
LPCWSTR szName NULL I Application does not use any memories exclusively

!=
NULL

I Name of the application (may contain spaces)

Return value Values Description
- - -

6.49.1 Usage:

STControlSetAppName(L"My Great App");

6.50 STControlGetErrorString method

This method returns an error description in German, English, French or Italian, depending on the system
language.

Available from Version 8.2.0.

LONG STControlGetErrorString(LPCWSTR szError, LONG* pnStringLength, LONG
nErrorId)

Parameter Values I/O Description
LPCWSTR szError NULL I The method returns the length of the error

description in the pnStringLength parameter
!=
NULL

I/O Array in which the error description is written; if the
array is too small, the end characters are cut off

LONG*
pnStringLength

>= 0 I/O Length of the error description or size of the
szError array in bytes

LONG nErrorId

0 I The description of the last error that occurred will be
returned.

< 0 I Error number, for which the description should be
returned.

Return value Values Description
LONG 0 Method was executed successfully

< 0 Error

6.50.1 Usage:

LONG nLen = 0;
LONG nRc = STControlGetErrorString(NULL, &nLen, 0);
if (nRc == 0)
{
 WCHAR* szError = new WCHAR[nLen / sizeof(WCHAR)];
 nRc = STControlGetErrorString(szError, &nLen, 0);
 if (nRc == 0)
 wprintf(szError);
 delete [] szError;
}

Guide_SIGAPILI_20210105_ENG 48

6.51 STControlSetCallback method

This method defines a callback routine that is called if one of the events is triggered. For more
information, see the Events chapter.

Available from Version 8.2.0.

VOID STControlSetCallback(CBPTR pCallback, LPVOID pCustomPar)

Parameter Values I/O Description
CBPTR pCallback NULL I No callback is used

!=
NULL

I Pointer to the callback routine

LPVOID pCustomPar all I Any parameter that is passed when the callback
routine is called; normally a pointer to the class
whose methods are called from the callback routine

Return value Values Description
- - -

The CBPTR type is defined as follows:

typedef VOID (*CBPTR)(LONG nEvent, LPVOID pData, LONG nDataSize, LPVOID
pCustomPar);

Parameter Values I/O Description
LONG nEvent Index of the triggered event from the following list:

0 I DeviceDisconnected()
1 I SensorHotSpotPressed()
2 I SensorTimeoutOccured()
3 I DisplayScrollPosChanged()
4 I SignatureDataReceived()

LPVOID pData !=
NULL

I Array of data that is given as a parameter to the
event; please refer to the respective event for a
description of the parameters

LONG nDataSize > 0 I Size of the pData array in bytes
LPVOID pCustomPar all I Parameter that was passed when calling

STControlSetCallback(); normally a pointer
to the class whose methods are called from the
callback routine

Return value Values Description
- - -

The following values defined in the header file can be used for the nEvent parameter:

#define STPAD_CALLBACK_DISCONNECT 0
#define STPAD_CALLBACK_HOTSPOT 1
#define STPAD_CALLBACK_TIMEOUT 2
#define STPAD_CALLBACK_SCROLL 3
#define STPAD_CALLBACK_SIGNATURE 4

Guide_SIGAPILI_20210105_ENG 49

6.51.1 Usage:

VOID Callback(LONG nEvent, LPVOID pData, LONG nDataSize, LPVOID
pCustomPar)

{
 if (!pCustomPar)
 return;

 CMyClass* pCls = (CMyClass*)pCustomPar;
 switch (nEvent)
 {
 case STPAD_CALLBACK_DISCONNECT:
 if (nDataSize >= sizeof(LONG))
 pCls->DeviceDisconnected(*(LONG*)pData);
 break;
 case STPAD_CALLBACK_HOTSPOT:
 if (nDataSize >= sizeof(LONG))
 pCls->SensorHotSpotPressed(*(LONG*)pData);
 break;
 case STPAD_CALLBACK_TIMEOUT:
 if (nDataSize >= sizeof(LONG))
 pCls->SensorTimeoutOccured(*(LONG*)pData);
 break;
 case STPAD_CALLBACK_SCROLL:
 if (nDataSize >= (2 * sizeof(LONG)))
 pCls->DisplayScrollPosChanged(*(LONG*)pData,

((LONG)pData + 1));
 break;
 case STPAD_CALLBACK_SIGNATURE:
 if (nDataSize >= (4 * sizeof(LONG)))
 pCls->SignatureDataReceived(*(LONG*)pData,

((LONG)pData + 1), *((LONG*)pData + 2),
((LONG)pData + 3));

 break;
 }
}

CMyClass::CMyClass()
{
 STControlSetCallback(&Callback, (VOID*)this);
}

6.52 STControlExit method

This method releases used resources; it must be called before the component is de-initialised.

Available from Version 8.2.0.

VOID STControlExit()

Parameter Values I/O Description
- - - -
Return value Values Description
- - -

Guide_SIGAPILI_20210105_ENG 50

6.52.1 Usage:

STControlExit();

Guide_SIGAPILI_20210105_ENG 51

7 Events

Events are named according to the following naming convention:

- General hardware events begin with ‘Device’
- Events that apply to the signature begin with ‘Signature’
- Sensor events begin with ‘Sensor’
- Display events begin with ‘Display’

The component uses a callback mechanism to pass events through to the application. For more
information, see the STControlSetCallback() method.

7.1 DeviceDisconnected event

This event is called as soon as a device is disconnected through an external event (e. g. unplugging the
device).

Available from Version 8.2.0.

VOID DeviceDisconnected(LONG nIndex)
Parameter Values Description
LONG nIndex >= 0 Index of the disconnected device
Return value Values Description
- - -

7.1.1 Usage:

VOID CMyClass::DeviceDisconnected(LONG nIndex)
{
 wprintf(L"Device %d disconnected!", nIndex);
}

7.2 SignatureDataReceived event

This event is called when signature data is received from the pad.

Available from Version 8.2.0.

VOID SignatureDataReceived(LONG nXPos, LONG nYPos, LONG nPressure, LONG
nTimestamp)

Parameter Values Description
LONG nXPos >= 0 x value of the received data record
LONG nYPos >= 0 y value of the received data record
LONG nPressure 0 -

1024
Pressure value of the received data record

LONG nTimestamp >= 0 Timestamp of the received data record
Return value Values Description
- - -

Guide_SIGAPILI_20210105_ENG 52

7.2.1 Usage:

VOID CMyClass::SignatureDataReceived(LONG nXPos, LONG nYPos, LONG
nPressure, LONG nTimestamp)

{
 wprintf(L"X: %d; Y: %d; P: %d; T: %d", nXPos, nYPos,

nPressure, nTimestamp);
}

7.3 SensorHotSpotPressed event

This event is called as soon as the user lifts the pen off a rectangle defined with
STSensorAddHotSpot().

Available from Version 8.2.0.

VOID STSensorHotSpotPressed(LONG nHotSpotId)

Parameter Values Description
LONG nHotSpotId >= 0 ID of the activated hotspot
Return value Values Description
- - -

7.3.1 Usage:

VOID CMyClass::SensorHotSpotPressed(LONG nHotSpotId)
{
 wprintf(L"Hotspot %d!", nHotSpotId);
}

7.4 SensorTimeoutOccured event

This event is called as soon as the timer started with STSensorStartTimer() has expired.

Available from Version 8.2.0.

VOID STSensorTimeoutOccured(LONG nPointsCount)

Parameter Values Description
LONG nPointsCount >= 0 Number of points captured if any
Return value Values Description
- - -

7.4.1 Usage:

VOID CMyClass::SensorTimeoutOccured(LONG nPointsCount)
{
 wprintf(L"Timeout, captured points: %d!", nPointsCount);
}

7.5 DisplayScrollPosChanged event

This event is called as soon as the scroll position of the display contents has changed.

Guide_SIGAPILI_20210105_ENG 53

Available from Version 8.2.0.

VOID STDisplayScrollPosChanged(LONG nXPos, LONG nYPos)

Parameter Values Description
LONG nXPos >= 0 Horizontal offset of the display contents to the left, in pixels
LONG nYPos >= 0 Vertical offset of the display contents to the top, in pixels
Return value Values Description
- - -

7.5.1.1 Application

VOID CMyClass::DisplayScrollPosChanged(LONG nXPos, LONG nYPos)
{
 wprintf(L"Scroll pos: %d / %d", nXPos, nYPos);
}

www.evolis.com

	1 Function overview
	2 System requirements
	2.1 signoPAD API components for Linux
	2.1.1 Dependencies

	2.2 signoPAD API components for Java
	2.3 signoPAD API components for Windows

	3 General information on the signoPAD API
	3.1 32- and 64-bit variants of the signoPAD API
	3.2 libSTPadLib.so
	3.3 libSTCPImageEngine.so
	3.4 Using multiple instances
	3.5 SignData structures
	3.5 SignData structures
	3.6 Notes for redistribution

	4 Description of possible error messages
	5 Information about the available image memory
	5.1 Volatile image memory
	5.1.1 Model type Sigma
	5.1.2 Model type Omega
	5.1.3 Gamma model
	5.1.4 Model type Alpha

	5.2 Non-volatile image memory
	5.2.1 Model type Sigma
	5.2.2 Model type Omega
	5.2.3 Gamma model
	5.2.4 Model type Alpha

	5.3 Copying between image memories
	5.4 The typical process
	5.5 The standby feature
	5.5.1 Displaying a logo
	5.5.2 Displaying a slide show
	5.5.2 Displaying a slide show

	6 Methods
	6.1 STDeviceGetConnectionType method
	6.1.1 Usage:

	6.2 STDeviceGetCount method
	6.2 STDeviceGetCount method
	6.2.1 Usage:

	6.3 STDeviceGetInfo method
	6.3.1 Usage:

	6.4 STDeviceGetVersion method
	6.4.1 Usage:

	6.5 STDeviceOpen method
	6.5.1 Usage:

	6.6 STDeviceClose method
	6.6.1 Usage:

	6.7 STDeviceSetLed method
	6.7.1 Usage:

	6.8 STSensorGetSampleRateMode method
	6.8.1 Usage:
	6.8.1 Usage:

	6.9 STSensorSetSampleRateMode method
	6.9.1 Usage:

	6.10 STSensorSetSignRect method
	6.10.1 Usage:

	6.11 STSensorClearSignRect method
	6.11.1 Usage:

	6.12 STSensorAddHotSpot method
	6.12.1 Usage:

	6.13 STSensorSetHotspotMode method
	6.13.1 Usage:
	6.13.1 Usage:

	6.14 STSensorClearHotSpots method
	6.14.1 Usage:

	6.15 STSensorStartTimer method
	6.15.1 Usage:

	6.16 STSensorStopTimer method
	6.16.1 Usage:

	6.17 STSignatureStart method
	6.17.1 Usage:

	6.18 STSignatureStop method
	6.18.1 Usage:

	6.19 STSignatureConfirm method
	6.19.1 Usage:

	6.20 STSignatureRetry method
	6.20.1 Usage:

	6.21 STSignatureCancel method
	6.21.1 Usage:

	6.22 STSignatureGetState method
	6.22.1 Usage:

	6.23 STSignatureGetSignData method
	6.23.1 Usage:
	6.23.1 Usage:

	6.24 STSignatureSaveAsFileEx method
	6.24.1 Usage:

	6.25 STSignatureGetBounds method
	6.25.1 Usage:

	6.26 STSignatureScaleToDisplay method
	6.26.1 Usage:

	6.27 STDisplayGetWidth method
	6.27 STDisplayGetWidth method
	6.27.1 Usage:

	6.28 STDisplayGetHeight method
	6.28.1 Usage:

	6.29 STDisplayGetTargetWidth method
	6.29.1 Usage:
	6.29.1 Usage:

	6.30 STDisplayGetTargetHeight method
	6.30.1 Usage:

	6.31 STDisplayErase method
	6.31.1 Usage:

	6.32 STDisplayEraseRect method
	6.32.1 Usage:

	6.33 STDisplayConfigPen method
	6.33.1 Usage:

	6.34 STDisplaySetFont method
	6.34 STDisplaySetFont method
	6.34.1 Usage:

	6.35 STDisplaySetFontColor method
	6.35.1 Usage:
	6.35.1 Usage:

	6.36 STDisplaySetTarget method
	6.36.1 Usage:

	6.37 STDisplaySetText method
	6.37.1 Usage:

	6.38 STDisplaySetTextInRect method
	6.38.1 Usage:

	6.39 STDisplaySetImageFromFile method
	6.39.1 Usage:

	6.40 STDisplaySetImageFromStore method
	6.40.1 Usage:

	6.41 STDisplaySetOverlayRect method
	6.41.1 Usage:

	6.42 STDisplaySetScrollPos method
	6.42.1 Usage:

	6.43 STDisplayGetScrollPos method
	6.43.1 Usage:

	6.44 STDisplaySaveImageAsFile method
	6.44.1 Usage:

	6.45 STDisplaySetStandbyImageFromFile method
	6.45.1 Usage:

	6.46 STDisplayConfigSlideShow method
	6.46 STDisplayConfigSlideShow method
	6.46.1 Usage:

	6.47 STDisplayGetStandbyId method
	6.47.1 Usage:

	6.48 STControlGetVersion method
	6.48.1 Usage:

	6.49 STControlSetAppName method
	6.49.1 Usage:

	6.50 STControlGetErrorString method
	6.50.1 Usage:

	6.51 STControlSetCallback method
	6.51 STControlSetCallback method
	6.51.1 Usage:
	6.51.1 Usage:

	6.52 STControlExit method
	6.52.1 Usage:
	6.52.1 Usage:

	7 Events
	7.1 DeviceDisconnected event
	7.1.1 Usage:

	7.2 SignatureDataReceived event
	7.2.1 Usage:
	7.2.1 Usage:

	7.3 SensorHotSpotPressed event
	7.3.1 Usage:

	7.4 SensorTimeoutOccured event
	7.4.1 Usage:

	7.5 DisplayScrollPosChanged event
	7.5.1.1 Application

